Two quantitative duplex real-time PCR assays were developed for co-amplification of human albumin and cytomegalovirus (CMV) or Epstein Barr virus (EBV) genes after automated extraction on whole blood, and compared two units for expressing viral DNA loads (copies per ml of blood or per 10(6) peripheral blood leukocytes (PBLs)) on 1,138 positive samples. Both PCRs were characterized by high sensitivity, reproducibility, and linear range. Automated extraction by a MagNA Pure LC Instrument was shown to be more efficient when peripheral blood cell count was inferior to 5 x 10(9) PBLs/L. Albumin co-amplification allows the detection of PCR inhibitors and normalization of viral load according to the number of cells calculated in the sample. The two ways of expressing viral load results were highly correlated, but quantitative differences varied in relation to variations of blood cell count. As these two viruses are highly cell associated, viral loads can be underestimated in patients with leucopenia. In the setting of pre-emptive strategies during CMV infection, the units in which results are expressed can influence clinical management, as illustrated in this article.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmv.21334 | DOI Listing |
Eur J Case Rep Intern Med
December 2024
Department of Internal Medicine, Hospital de Santa Maria, ULS de Santa Maria, Lisbon, Portugal.
Unlabelled: Cytomegalovirus (CMV) is a human herpes virus with a worldwide seroprevalence of 60-100%, mainly known to cause severe life-threatening disease in immunocompromised patients. In immunocompetent hosts (IMCh), CMV causes a self-limiting mononucleosis-like infection, and severe pictures are less recognized. We report a case of a previously healthy 62-year-old woman evaluated in the Internal Medicine outpatient clinic for 3 weeks of progressive fatigue, generalised inflammatory arthralgias, hypogastric discomfort and daily persistent fever.
View Article and Find Full Text PDFNat Immunol
January 2025
Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
Hematopoietic stem cells must mitigate myriad stressors throughout their lifetime to ensure normal blood cell generation. Here, we uncover unfolded protein response stress sensor inositol-requiring enzyme-1α (IRE1α) signaling in hematopoietic stem and progenitor cells (HSPCs) as a safeguard against myeloid leukemogenesis. Activated in part by an NADPH oxidase-2 mechanism, IRE1α-induced X-box binding protein-1 (XBP1) mediated repression of pro-leukemogenic programs exemplified by the Wnt-β-catenin pathway.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
The key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China. Electronic address:
Background: Viral epidemics have long endangered human health and had dramatic impacts on environment and society. The currently known viruses and the rapid emergence of previously unknown viruses lead to an urgent need for effective virus detection strategies. It is important to develop methods that can detect multiple related viruses simultaneously in order to improve detection efficiency and to avoid treatment delays due to misdiagnoses.
View Article and Find Full Text PDFVet Microbiol
January 2025
Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China.
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly contagious swine pathogen, causing respiratory problems in piglets and reproductive failure in sows. Palmitoylation, catalyzed by zinc finger Asp-His-His-Cys (ZDHHC) domain-containing palmitoyl acyltransferases, plays intricate roles in virus infection. However, whether palmitoylation regulates PRRSV replication is incompletely understood.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
Addressing the frequent emergence of SARS-CoV-2 mutant strains requires therapeutic approaches with innovative neutralization mechanisms. The targeting of multivalent nanobodies can enhance potency and reduce the risk of viral escape, positioning them as promising drug candidates. Here, the synergistic mechanisms of the two types of nanobodies are investigated deeply.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!