Biodistribution of 1.4- and 18-nm gold particles in rats.

Small

German Research Center for Environmental Health, Institute for Inhalation Biology, Focus Network Nanoparticles and Health, Ingolstädter Landstr. 1, Neuherberg/Munich 85764, Germany.

Published: December 2008

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.200800922DOI Listing

Publication Analysis

Top Keywords

biodistribution 14-
4
14- 18-nm
4
18-nm gold
4
gold particles
4
particles rats
4
biodistribution
1
18-nm
1
gold
1
particles
1
rats
1

Similar Publications

Boron (B) neutron capture therapy (BNCT) is a novel non-invasive targeted cancer therapy based on the nuclear capture reaction B (n, alpha) Li that enables the death of cancer cells without damaging neighboring normal cells. However, the development of clinically approved boron drugs remains challenging. We have previously reported on self-forming nanoparticles for drug delivery consisting of a biodegradable polymer, namely, "AB-type" Lactosome nanoparticles (AB-Lac particles)- highly loaded with hydrophobic B compounds, namely -Carborane (Carb) or 1,2-dihexyl--Carborane (diC6-Carb), and the latter (diC6-Carb) especially showed the "molecular glue" effect.

View Article and Find Full Text PDF

Kisspeptin (KISS1) and its cognate receptor (KISS1R) are implicated in the progression of various cancers. A gallium-68 labelled kisspeptin-10 (KP10), the minimal biologically active structure, has potential as a pan-tumour radiopharmaceutical for the detection of cancers. Furthermore, a lutetium-177 labelled KP10 could find therapeutic application in treating oncological diseases.

View Article and Find Full Text PDF

Background: Coronary stenting operations have become the main option for the treatment of coronary heart disease. Vessel recovery after stenting has emerged as a critical factor in reducing possible complications. In this study, we evaluated the feasibility, safety and efficacy of locally administered intraluminal gene therapy delivered using a specialized infusion balloon catheter.

View Article and Find Full Text PDF

Development of an Irreversible Peptidomimetic Radioligand for PET Imaging of ST14 Protease.

Bioconjug Chem

January 2025

Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 210000, China.

To enhance the affinity of peptide ligands for their targets, covalent warheads can be engineered to facilitate irreversible binding. This study aimed at exploring the potential of a Ga-labeled peptidomimetic radioligand, [Ga]Ga-DOTA-RQAR-kbt, for PET imaging through its irreversible binding to the suppression of tumorigenicity 14 (ST14). An Arg-Gln-Ala-Arg (RQAR) tetrapeptide was conjugated with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid for gallium-68 radiolabeling.

View Article and Find Full Text PDF

Encapsulation of paclitaxel into date palm lipid droplets for enhanced brain cancer therapy.

Sci Rep

December 2024

Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria.

Paclitaxel, a powerful anticancer drug, is limited by its poor water solubility and systemic toxicity, which hinder its effectiveness against aggressive brain tumors. This study aims to overcome these challenges by exploring novel intranasal delivery methods using lipid droplets (LDs) derived from date palm seeds (DPLDs) and mouse liver (MLLDs). The anticancer efficacy of PTX was evaluated using a comparative intranasal delivery approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!