The rare plant Rheum palaestinum (Polygonaceae) is a perennial hemicryptophyte that grows during the rainy winter in desert mountainous areas in Israel and Jordan that receive an average annual rainfall of ca. 75 mm. It produces between one and four large round leaves that are tightly attached to the ground and form large rosettes of up to 1 m(2). These leaves differ markedly from the typical small leaves of most desert plants. Moreover, they have a unique 3D morphology resembling a scaled-down mountainous area with well-developed steep drainage systems, raising the question which selective agents were involved in their evolution. We propose that the large leaves collect rainwater that then infiltrates the soil surrounding the root. We measured the seasonal course of leaf growth, examined the area of wet soil surrounding the root after actual and simulated rain, and modeled the water harvesting capacity using the plant leaf area and the weekly precipitation. We show that even in the slightest rains, water flows above the veins to the leaf's base where it irrigates the vertical root. A typical plant harvests more than 4,100 cm(3) of water per year, and enjoys a water regime of about 427 mm/year, equivalent to the water supply in a Mediterranean climate. This is the first example of self-irrigation by large leaves in a desert plant, creating a leaf-made mini oasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00114-008-0472-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!