Copper-doped ceria catalysts feature in a variety of catalytic reactions. One important application is selective hydrogen combustion via oxygen exchange, which forms the basis of cyclic oxidative dehydrogenation. This paper describes the synthesis of monophasic (doped) and biphasic (supported) Cu-ceria catalysts, that are then characterized using a combination of temperature programmed reduction (TPR) and X-ray diffraction (XRD) methods. The catalysts are analyzed both as fresh samples and after redox cycling at 550-800 degrees C. TPR and XRD characterization clarify the role of the active sites on the catalyst surface and the copper-ceria interactions. Depending on the catalyst type, reduction occurs at approximately 110 degrees C, approximately 150 degrees C, or approximately 190 degrees C. The reduction at 110 degrees C is ascribed to highly dispersed copper species doped in the ceria lattice, and that at 190 degrees C to CuO crystallites supported on ceria. Remarkably, both types converge to the 150 degrees C feature after redox cycling. The reduction temperature of the doped catalyst increases after redox cycling, indicating that stable Cu clusters form at the surface. Conversely, the reduction temperature of the "supported" catalyst decreases after redox cycling, and the CuO crystallites disappear. With this knowledge, a copper-doped ceria catalyst is analyzed after application in selective hydrogen combustion (16 consecutive redox cycles at 550 degrees C). No CuO crystallites are observed, and the sample reduces at approximately 110 degrees C. This suggests that copper-doped ceria is the active oxygen exchange phase in selective hydrogen combustion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b809769k | DOI Listing |
Small
January 2025
Council of Scientific and Industrial Research-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat, 364002, India.
Fluorine-free organic framework polyelectrolyte membranes showing near frictionless ionic conductivities are gaining cognitive insights. However, the co-precipitation of COFs in the membranes often brings trade-offs to commission long-life electrochemical energy storage solutions. Herein, a durable and ionically miscible dual-ion exchange membrane based on triazine organic framework (TOF) is designed for alkaline redox flow batteries (RFB).
View Article and Find Full Text PDFLimnology (Tokyo)
July 2024
Department of Geological and Environmental Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105 Beer Sheva, Israel.
Unlabelled: The redox conditions in the littoral limnic sediments may be affected by the penetration of plant roots which provide channels for oxygen transport into the sediment while decomposition of the dead roots results in consumption of oxygen. The goal of this work was to study the impact of environmental parameters including penetration of roots of L. into the sediments on cycling of the redox-sensitive elements in Lake Kinneret.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Chemistry, South China Normal University, Guangzhou 510006, People's Republic of China.
The main limitations of aqueous nickel-zinc batteries are their relatively low energy density and short cycle life, which are inextricably linked to the limitations of nickel-based cathodes. In this study, a low-crystallinity flower-like cobalt-doped nickel hydroxide (α-Ni(OH)-0.2Co) is constructed by hydrothermal reaction and employed as high-energy-density cathode for aqueous rechargeable nickel-zinc batteries.
View Article and Find Full Text PDFPhysiol Rep
January 2025
Department of Sport Science, University of Innsbruck, Innsbruck, Austria.
Time-restricted feeding (TRF) and aerobic exercise are lifestyle interventions to prevent or manage different metabolic diseases. How these interventions interact, including the impact of meal timing, is not well understood. The aim of this study was to examine the influence of TRF on fat oxidation during exercise, whereby participants performed an 8-week fat-training program either in the fasted state or after a carbohydrate-based snack.
View Article and Find Full Text PDFSci Rep
January 2025
Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
The design and fabrication of novel electrodes with strong electrochemical responses are crucial in advanced supercapacitor technology. In this study, a poly(m-toluidine)/silver-silver oxide (PMT/Ag-AgO) nanocomposite was prepared using the photopolymerization method. Various characterization techniques were employed to analyze the prepared nanomaterials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!