During intrathymic generation of the T cell repertoire, a series of selection processes ensures that only self-MHC (Major Histocompatibility Complex) restricted and self-tolerant T cells are allowed to survive. Interactions with MHC ligands on the surface of thymic epithelial cells (TECs) play a pivotal role in the decision-making of developing thymocytes. A number of distinct cell-biological features of TECs have emerged that may predispose them to serve non-redundant functions in thymocyte "education". Thus, cortical TECs express a rather unique set of proteolytic enzymes for antigen processing in the context of positive selection, whereas medullary TECs "ectopically" express a plethora of otherwise strictly tissue-restricted antigens (TRAs), a property that obviously has evolved to make these self-antigens "visible" to developing thymocytes for negative selection. One of the latest additions to this growing list of functional adaptations of TECs is their constitutively high rate of autophagy. Recently, we have provided evidence that autophagy in TECs shuttles cytoplasmic self-antigens into the MHC class II loading pathway for positive selection of T cells and tolerance induction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4161/cc.7.23.7121 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!