Molecular detection of Oceanobacillus iheyensis in sand of Brazilian beaches.

J Gen Appl Microbiol

Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, RJ, Brazil.

Published: October 2008

Download full-text PDF

Source
http://dx.doi.org/10.2323/jgam.54.305DOI Listing

Publication Analysis

Top Keywords

molecular detection
4
detection oceanobacillus
4
oceanobacillus iheyensis
4
iheyensis sand
4
sand brazilian
4
brazilian beaches
4
molecular
1
oceanobacillus
1
iheyensis
1
sand
1

Similar Publications

A novel compound heterozygous mutation in the DYNC2H1 gene in a Chinese family with Jeune syndrome.

Hereditas

January 2025

Key Laboratory of Reproductive Health Diseases Research and Translation of Ministry of Education & Key Laboratory of Human Reproductive Medicine and Genetic Research of Hainan Provincie & Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China.

Background: The dynein cytoplasmic two heavy chain 1 (DYNC2H1) gene encodes a cytoplasmic dynein subunit. Cytoplasmic dyneins transport cargo towards the minus end of microtubules and are thus termed the "retrograde" cellular motor. Mutations in DYNC2H1 are the main causative mutations of short rib-thoracic dysplasia syndrome type III with or without polydactyly (SRTD3).

View Article and Find Full Text PDF

Detection of early relapse in multiple myeloma patients.

Cell Div

January 2025

Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.

Background: Multiple myeloma (MM) represents the second most common hematological malignancy characterized by the infiltration of the bone marrow by plasma cells that produce monoclonal immunoglobulin. While the quality and length of life of MM patients have significantly increased, MM remains a hard-to-treat disease; almost all patients relapse. As MM is highly heterogenous, patients relapse at different times.

View Article and Find Full Text PDF

Sodium butyrate regulates macrophage polarization by TGR5/β-arrestin2 in vitro.

Mol Med

January 2025

Department of Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, China.

Background: Macrophages play an important role in the pathogenesis of ulcerative colitis (UC). We will explore the effects of sodium butyrate (SB) on macrophage function.

Methods: The targets of butyric acid were identified using SwissTargetPrediction database and surface plasmon resonance (SPR).

View Article and Find Full Text PDF

scATAC-seq generates more accurate and complete regulatory maps than bulk ATAC-seq.

Sci Rep

January 2025

MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.

Bulk ATAC-seq assays have been used to map and profile the chromatin accessibility of regulatory elements such as enhancers, promoters, and insulators. This has provided great insight into the regulation of gene expression in many cell types in a variety of organisms. To date, ATAC-seq has most often been used to provide an average evaluation of chromatin accessibility in populations of cells.

View Article and Find Full Text PDF

The NMR signals from protein sidechains are rich in information about intra- and inter-molecular interactions, but their detection can be complicated due to spectral overlap as well as conformational and hydrogen exchange. In this work, we demonstrate a protocol for multi-dimensional solid-state NMR spectral editing of signals from basic sidechains based on Hadamard matrix encoding. The Hadamard method acquires multi-dimensional experiments in such a way that both the backbone and under-sampled sidechain signals can be decoded for unambiguous editing in the N spectral frequency dimension.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!