Characterization of fluorescent sterol binding to purified human NPC1.

J Biol Chem

Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.

Published: January 2009

Mutations in the NPC1 gene cause Niemann-Pick type C disease, which appears to result from a defect in intracellular cholesterol trafficking. NPC1 is a member of the resistance-nodulation-cell division (RND) permease superfamily and contains a sterol-sensing domain, yet its cellular function and the identity of its substrates remain unknown. FLAG-tagged human NPC1 was purified from NPC1-expressing Chinese hamster ovary cells by solubilization in 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS), followed by affinity chromatography. Purified NPC1 in detergent solution appeared to be oligomeric as determined by gel filtration fast protein liquid chromatography and was photolabeled by an azido-cholesterol derivative. Fluorescent cholesterol analogs, including dehydroergosterol, cholestatrienol, and 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3beta-ol (NBD-cholesterol), displayed enhanced fluorescence upon binding to NPC1 and also resulted in saturable, concentration-dependent quenching of NPC1 intrinsic Trp fluorescence. The apparent binding affinity for these three sterols was in the 0.5-6 microm range. Binding of NBD-cholesterol to NPC1 at low detergent concentration (2 mm CHAPS) was of high apparent affinity (0.5-0.6 microm) and occurred rapidly (<1 min). However, binding of a BODIPY-labeled cholesterol derivative was very slow, requiring approximately 3 h to reach equilibrium. The apparent NBD-cholesterol binding affinity was greatly reduced at higher detergent concentration. The stoichiometry of NBD-cholesterol binding to NPC1 was approximately 1. Various sterols, including native cholesterol and 25-hydroxycholesterol, inhibited NBD-cholesterol binding, suggesting that they compete for binding to the protein. Dynamic quenching studies showed that bound NBD-cholesterol was almost completely shielded from the aqueous medium, suggesting that it is buried in a deep hydrophobic pocket in NPC1. The use of fluorescent cholesterol analogs provides novel information on the molecular properties of the sterol-binding site in the full-length NPC1 protein.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M803741200DOI Listing

Publication Analysis

Top Keywords

npc1
8
human npc1
8
characterization fluorescent
4
fluorescent sterol
4
binding
4
sterol binding
4
binding purified
4
purified human
4
npc1 mutations
4
mutations npc1
4

Similar Publications

This study aimed to investigate the genetic association between glioblastoma (GBM) and unsupervised deep learning-derived imaging phenotypes (UDIPs). We employed a combination of genome-wide association study (GWAS) data, single-nucleus RNA sequencing (snRNA-seq), and scPagwas (pathway-based polygenic regression framework) methods to explore the genetic links between UDIPs and GBM. Two-sample Mendelian randomization analyses were conducted to identify causal relationships between UDIPs and GBM.

View Article and Find Full Text PDF

Abnormal autophagy regulation is implicated in lupus and other autoimmune diseases. We investigated autophagy in the murine pristane-induced lupus model. Pristane causes monocyte/macrophage-mediated endoplasmic reticulum (ER) stress in lung endothelial cells and diffuse alveolar hemorrhage (DAH) indistinguishable from DAH in lupus patients.

View Article and Find Full Text PDF

Lysosomal storage diseases (LSDs) comprise ~50 monogenic disorders marked by the buildup of cellular material in lysosomes, yet systematic global molecular phenotyping of proteins and lipids is lacking. We present a nanoflow-based multiomic single-shot technology (nMOST) workflow that quantifies HeLa cell proteomes and lipidomes from over two dozen LSD mutants. Global cross-correlation analysis between lipids and proteins identified autophagy defects, notably the accumulation of ferritinophagy substrates and receptors, especially in and mutants, where lysosomes accumulate cholesterol.

View Article and Find Full Text PDF

Maturation of conventional dendritic cells (cDCs) is crucial for maintaining tolerogenic safeguards against auto-immunity and for promoting immunogenic responses to pathogens and cancer. The subcellular mechanism for cDC maturation remains poorly defined. We show that cDCs mature by leveraging an internal reservoir of cholesterol (harnessed from extracellular cell debris and generated by de novo synthesis) to assemble lipid nanodomains on cell surfaces of maturing cDCs, enhance expression of maturation markers and stabilize immune receptor signaling.

View Article and Find Full Text PDF

Decoding the blueprint of receptor binding by filoviruses through large-scale binding assays and machine learning.

Cell Host Microbe

January 2025

Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA. Electronic address:

Evidence suggests that bats are important hosts of filoviruses, yet the specific species involved remain largely unidentified. Niemann-Pick C1 (NPC1) is an essential entry receptor, with amino acid variations influencing viral susceptibility and species-specific tropism. Herein, we conducted combinatorial binding studies with seven filovirus glycoproteins (GPs) and NPC1 orthologs from 81 bat species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!