Base excision repair (BER) is the primary DNA damage repair mechanism for repairing small base lesions resulting from oxidation and alkylation damage. This study examines the association between 24 single-nucleotide polymorphisms (SNPs) belonging to five BER genes (XRCC1, APEX1, PARP1, MUTYH and OGG1) and lung cancer among Latinos (113 cases and 299 controls) and African-Americans (255 cases and 280 controls). The goal was to evaluate the differences in genetic contribution to lung cancer risk by ethnic groups. Analyses of individual SNPs and haplotypes were performed using unconditional logistic regressions adjusted for age, sex and genetic ancestry. Four SNPs among Latinos and one SNP among African-Americans were significantly (P < 0.05) associated with either risk of all lung cancer or non-small cell lung cancer (NSCLC). However, only the association between XRCC1 Arg399Gln (rs25487) and NSCLC among Latinos (odds ratio associated with every copy of Gln = 1.52; 95% confidence interval: 1.01-2.28) had a false-positive report probability of <0.5. Arg399Gln is a SNP with some functional evidence and has been shown previously to be an important SNP associated with lung cancer, mostly for Asians. Since the analyses were adjusted for genetic ancestry, the observed association between Arg399Gln and NSCLC among Latinos is unlikely to be confounded by population stratification; however, this result needs to be confirmed by additional studies among the Latino population. This study suggests that there are genetic differences in the association between BER pathway and lung cancer between Latinos and African-Americans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2722143PMC
http://dx.doi.org/10.1093/carcin/bgn261DOI Listing

Publication Analysis

Top Keywords

lung cancer
20
base excision
8
excision repair
8
risk lung
8
lung
5
cancer
5
repair genes
4
genes risk
4
cancer san
4
san francisco
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!