AI Article Synopsis

  • - MutL is essential for the mismatch repair (MMR) process, helping another protein, MutS, in both prokaryotic and eukaryotic organisms, but its tendency to aggregate complicates studying its relationships with other MMR proteins.
  • - Researchers analyzed a stable version of MutL from the bacterium Thermotoga maritima (TmL), finding it mainly exists without aggregation, except in a dimeric form.
  • - The study used small-angle X-ray scattering (SAXS) to reveal that TmL undergoes structural changes when interacting with nucleotides and ssDNA, providing insights into its flexibility and suggesting a new 3D model for the full-length MutL molecule.

Article Abstract

MutL is required to assist the mismatch repair protein MutS during initiation of the methyl-directed mismatch repair (MMR) response in various organisms ranging from prokaryotes to eukaryotes. Despite this necessity, the inherent propensity of MutL to aggregate has led to significant difficulties in determining its biological relationship with other MMR-related proteins. Here, we perform analysis on the thermostable MutL protein found in Thermotoga maritima MSB8 (TmL). Size exclusion chromatographic analysis indicates the lack of aggregated forms with the exception of a dimeric TmL. Small-angle X-ray scattering (SAXS) analysis reveals that the solution structures of the full-length TmL and its corresponding complexes with nucleotides and ssDNA undergo conformational changes. The elucidated TmL SAXS model is superimposed to the crystal structure of the C-terminal domain of Escherichia coli MutL. In addition, the N-terminal SAXS model of TmL exists as monomeric form, indicating that TmL has a structurally flexible N-terminal domain. TmL SAXS analysis can suggest a considerable possibility on a new 3D view of the previously unresolved full-length MutL molecule.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jb/mvn157DOI Listing

Publication Analysis

Top Keywords

conformational changes
8
thermotoga maritima
8
small-angle x-ray
8
x-ray scattering
8
mismatch repair
8
saxs analysis
8
tml saxs
8
saxs model
8
tml
7
mutl
6

Similar Publications

Nanopore sensing is widely used for single-molecule detection, originally applied to nucleic acids and now extended to protein sensing. Our study focuses on the complex conformational changes of peptides in nanopores, which may have implications for peptide fingerprinting and protein identification. Specifically, we investigated the interaction of a β-hairpin peptide (SV28) within an α-hemolysin (αHL) nanopore.

View Article and Find Full Text PDF

The B domain of protein A is a biotechnologically important three-helix bundle protein. It binds the Fc fragment of antibodies with helix 1/2 and the Fab region with helix 2/3. Here we designed a helix shuffled variant by changing the connectivity of the helices, in order to redesign the helix bundle, yielding altered helix-loop-helix properties.

View Article and Find Full Text PDF

Tetrachlorobisphenol A (TCBPA) is a kind of fire retardant extensively used in our life, but it can accumulate in organisms and potentially have toxic effects. Transferrin (TF) is a glycoprotein predominantly present in the blood plasma, serving as an essential mediator for the transportation of iron and other small molecules. In our study, various techniques including multi-spectroscopic and molecular docking were employed to examine the interaction between TCBPA and TF.

View Article and Find Full Text PDF

The rapid and efficient bone regeneration is still in unsatisfactory outcomes, demonstrating alternative strategy and molecular mechanism is necessary. Nanoscale biomaterials have shown some promising results in enhancing bone regeneration, however, the detailed interaction mechanism between nanomaterial and cells/tissue formation is not clear. Herein, a molecular-based inorganic-organic nanomaterial poly(citrate-siloxane) (PCS) is reported which can rapidly enhance osteogenic differentiation and bone formation through a special interaction with the cellular surface communication network factor 3 (CCN3), further activating the Wnt10b/β-catenin signaling pathway.

View Article and Find Full Text PDF

This study evaluated the effects of chemical modification, including ethanol, acetic acid, and natural deep eutectic solvents (NADES), on the secondary and tertiary structures, hydrophobicity, free amine content, protein-protein interactions, and functional properties of zein. The NADES used included choline chloride: oxalic acid, choline chloride: urea, choline chloride: glycerol, and glucose: citric acid. The results reveal that the NADES system significantly altered zein's structures, as evidenced by Fourier transform infrared spectroscopy, fluorescence, and Ultraviolet-Visible Spectroscopy analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!