The role of glia in Parkinson's disease (PD) is very interesting because it may open new therapeutic strategies in this disease. Traditionally it has been considered that astrocytes and microglia play different roles in PD: Astroglia are considered the "good" glia and have traditionally been supposed to be neuroprotective due to their capacity to quench free radicals and secrete neurotrophic factors, whereas microglia, considered the "bad" glia, are thought to play a critical role in neuroinflammation. The proportion of astrocytes surrounding dopamine (DA) neurons in the substantia nigra, the target nucleus for neurodegeneration in PD, is the lowest for any brain area, suggesting that DA neurons are more vulnerable in terms of glial support than any neuron in other brain areas. Astrocytes are critical in the modulation of the neurotoxic effects of many toxins that induce experimental parkinsonism and they produce substances in vitro that could modify the effects of L-DOPA from neurotoxic to neurotrophic. There is a great interest in the role of inflammation in PD, and in the brains of these patients there is evidence for microglial production of cytokines and other substances that could be harmful to neurons, suggesting that microglia of the substantia nigra could be actively involved, primarily or secondarily, in the neurodegeneration process. There is, however, evidence in favor of the role of neurotoxic diffusible signals from microglia to DA neurons. More recently a third glial player, oligodendroglia, has been implicated in the pathogenesis of PD. Oligodendroglia play a key role in myelination of the nervous system. Recent neuropathological studies suggested that the nigrostriatal dopamine neurons, which were considered classically as the primary target for neurodegeneration in PD, degenerate at later stages than other neurons with poor myelination. Therefore, the role of oligodendroglia, which also secrete neurotrophic factors, has entered the center of interest of neuroscientists.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1073858408322839DOI Listing

Publication Analysis

Top Keywords

secrete neurotrophic
8
neurotrophic factors
8
dopamine neurons
8
substantia nigra
8
role
6
neurons
6
glial cells
4
cells players
4
players parkinsonism
4
parkinsonism "good"
4

Similar Publications

People living with HIV (PLWH) experience HIV-associated neurocognitive disorders (HAND), even though combination antiretroviral therapy (cART) suppresses HIV replication. HIV-1 transactivator of transcription (HIV-1 Tat) contributes to the development of HAND through neuroinflammatory and neurotoxic mechanisms. C-C chemokine 5 receptor (CCR5) is important in immune cell targeting and is a co-receptor for HIV viral entry into CD4+ cells.

View Article and Find Full Text PDF

People with type 2 diabetes (T2D) have a greater risk of developing neurodegenerative diseases, like Alzheimer's disease, in later life. Exogenous ketone supplements containing the ketone body β-hydroxybutyrate (β-OHB) may be a strategy to protect the brain as β-OHB can support cerebral metabolism and promote neuronal plasticity via expression of brain-derived neurotrophic factor (BDNF). Parallel human (ClinicalTrials.

View Article and Find Full Text PDF

Prader-Willi syndrome (PWS) is a rare genetic disease that causes developmental delays, intellectual impairment, constant hunger, obesity, endocrine dysfunction, and various behavioral and neuropsychiatric abnormalities. Standard care of PWS is limited to strict supervision of food intake and growth hormone therapy, highlighting the unmet need for new therapeutic strategies. Environmental enrichment (EE), a housing environment providing physical, social, and cognitive stimulations, exerts broad benefits on mental and physical health.

View Article and Find Full Text PDF

Microglial activation states and their implications for Alzheimer's Disease.

J Prev Alzheimers Dis

January 2025

School of Health and Biomedical Sciences, RMIT University, 220 3-5 Plenty Road, Bundoora VIC 3082, Australia. Electronic address:

Alzheimer's Disease (AD) is a chronic neurodegenerative disorder characterized by the accumulation of toxic amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs) of tau protein in the brain. Microglia, key immune cells of the central nervous system, play an important role in AD development and progression, primarily through their responses to Aβ and NFTs. Initially, microglia can clear Aβ, but in AD, chronic activation overwhelms protective mechanisms, leading to sustained neuroinflammation that enhances plaque toxicity, setting off a damaging cycle that affects neurons, astrocytes, cerebral vasculature, and other microglia.

View Article and Find Full Text PDF

Effect of electroacupuncture on vascular remodeling in rats with cerebral ischemia by regulating irisin based on VEGF/Akt/eNOS signaling pathway.

Brain Res Bull

January 2025

School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Geriatric Diseases, Huashan Hospital, Fudan University, Shanghai, China. Electronic address:

Article Synopsis
  • The study investigated how electroacupuncture (EA) affects irisin secretion and its role in recovering brain function and blood vessel health after a stroke in rats.
  • The research showed that EA increased irisin levels significantly after seven days and improved neurobehavioral function while reducing brain damage and enhancing blood flow and vascular growth.
  • These beneficial effects of EA were weakened when the gene responsible for irisin production was silenced, suggesting that irisin plays a critical role in EA’s therapeutic effects on brain recovery.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!