Reactive oxygen species generators affect quality parameters and apoptosis markers differently in red deer spermatozoa.

Reproduction

Biology of Reproduction Group, National Wildlife Research Institute (IREC), CSIC-UCLM-JCCM, and Institute for Regional Development (IDR), Ciencia y Tecnología Agroforestal, ETSIA, University of Castilla-La Mancha, Albacete, Spain.

Published: February 2009

Fe(2)(+)/ascorbate, hydrogen peroxide (H(2)O(2)), and hypoxanthine/xanthine oxidase (XOD) are commonly used for inducing oxidative stress on spermatozoa. A comparative study of these agents was carried out on thawed spermatozoa from red deer. First, we tested a high, medium, and low concentration of each agent: 100, 10, and 1 microM Fe(2)(+) (hydroxyl radical generator); 1 mM, 100, and 10 microM H(2)O(2); and 100, 10, and 1 mU/ml XOD (superoxide and H(2)O(2) generator), incubated at 37 degrees C for 180 min. Intracellular reactive oxygen species (ROS; H(2)DCFDA) increased with dose and time similarly for the three systems at each concentration level. Motility and mitochondrial membrane potential (Deltapsi(m)) were considerably decreased by H(2)O(2) (1 mM and 100 microM) and XOD (100 and 10 mU/ml). Only 1 mM H(2)O(2) reduced viability. The antioxidant Trolox (10 microM) reduced intracellular ROS, but could not prevent the H(2)O(2) or XOD effects. In a second experiment, YO-PRO-1 and M540 were used as apoptotic and membrane stability markers respectively. Only H(2)O(2) increased the proportion of apoptotic and membrane-destabilized spermatozoa. Catalase added to XOD prevented Deltapsi(m) loss, confirming that H(2)O(2) was the causative agent, not superoxide. In a third experiment, caspase activation was tested using the (FAM-VAD-FMK) probe. Viable spermatozoa with activated caspases could be detected in untreated samples, and only H(2)O(2) increased their proportion after 60 min. There were important differences between ROS generators, H(2)O(2) being the most cytotoxic. Although H(2)O(2) and XOD caused Deltapsi(m) dissipation, this was not reflected in increasing apoptotic markers.

Download full-text PDF

Source
http://dx.doi.org/10.1530/REP-08-0357DOI Listing

Publication Analysis

Top Keywords

100 microm
12
h2o2
11
reactive oxygen
8
oxygen species
8
red deer
8
h2o2 100
8
100 mu/ml
8
h2o2 xod
8
h2o2 increased
8
increased proportion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!