The objective of this study was to determine the effect of dietary concentration of dl-malic acid (MA) on DMI, CH(4) emission, and rumen fermentation in beef cattle. Two Latin square experiments were conducted. In Exp. 1, six beef heifers (19 +/- 1 mo old) were assigned in a duplicated Latin square to 1 of 3 dietary concentrations of MA on a DMI basis (0%, MA-0; 3.75%, MA-3.75; or 7.5%, MA-7.5) over 3 periods. In Exp. 2, four rumen-fistulated steers (48 +/- 1 mo old) were assigned to 1 of 4 dietary concentrations of MA (0%, MA-0; 2.5%, MA-2.5; 5.0%, MA-5.0; or 7.5%, MA-7.5) on a DMI basis, over 4 periods. Both experimental diets consisted of grass silage and pelleted concentrate (containing MA). Silage was fed ad libitum once daily (a.m.), whereas concentrate was fed twice daily (a.m. and p.m.) with the aim of achieving a total DMI of 40:60 silage:concentrate. In both Exp. 1 and 2, experimental periods consisted of 28 d, incorporating a 13-d acclimatization, a 5-d measurement period, and a 10-d washout period. In Exp. 1, enteric CH(4), feed apparent digestibility, and feed intake were measured over the 5-d measurement period. In Exp. 2, rumen fluid was collected on d 16 to 18, immediately before (a.m.) feeding and 2, 4, 6, and 8 h thereafter. Rumen pH was determined and samples were taken for protozoa count, VFA, and ammonia analysis. Enteric CH(4) emissions were estimated by using the sulfur hexafluoride tracer technique and feed apparent digestibility was estimated by using chromic oxide as an external marker for fecal output. In Exp. 1, increasing dietary MA led to a linear decrease in total DMI (P < 0.001) and total daily CH(4) emissions (P < 0.001). Compared with the control diet, the greatest concentration of MA decreased total daily CH(4) emissions by 16%, which corresponded to a 9% reduction per unit of DMI. Similarly, in Exp. 2, inclusion of MA reduced DMI in a linear (P = 0.002) and quadratic (P < 0.001) fashion. Increasing dietary MA led to a linear decrease in molar proportion of acetic (P = 0.004) and butyric acids (P < 0.001) and an increase in propionic acid (P < 0.001). Ruminal pH tended to increase (P = 0.10) with increasing dietary MA. Dietary inclusion of MA led to a linear (P = 0.01) decrease in protozoa numbers. Increasing supplementation with MA decreased CH(4) emissions, but DMI was also decreased, which could have potentially negative effects on animal performance.

Download full-text PDF

Source
http://dx.doi.org/10.2527/jas.2008-1026DOI Listing

Publication Analysis

Top Keywords

ch4 emissions
16
increasing dietary
12
led linear
12
dl-malic acid
8
feed intake
8
emission rumen
8
rumen fermentation
8
fermentation beef
8
beef cattle
8
dmi
8

Similar Publications

A series of in vitro studies were conducted to explore the anti-methanogenic potential of five seaweeds collected from the Indian sea and to optimize the level(s) of incorporation of the most promising seaweed(s) into a straw and concentrate diet to achieve a significant reduction in methane (CH) production without disturbing rumen fermentation characteristics. A chemical composition analysis revealed a notable ash content varying between 55 and 70% in seaweeds. The crude protein content was highly variable and ranged between 3.

View Article and Find Full Text PDF

Cattle are ruminant animals that produce enteric methane (CH) emissions as a byproduct of their natural digestive process. U.S.

View Article and Find Full Text PDF

As one of the top emitters of methane (CH), China must take action to achieve its carbon neutrality goal. Programs to reduce CH emissions would benefit from the establishment of the China Certified Emission Reduction (CCER) trading market. However, studies investigating the impact of the CCER trading market on CH reduction remain limited.

View Article and Find Full Text PDF

Anaerobic digestion (AD) technology offers significant advantages in addressing environmental issues arising from the intensification of livestock production since it enables waste reduction and energy recovery. However, the molecular composition of dissolved organic matter (DOM) and its linkages to microbial biodiversity during the industrial-scale AD process of chicken manure (CM) remains unclear. In this study, the chemical structure of CM digestate-derived DOM was characterized by using multi-spectroscopic techniques and ultrahigh-resolution mass spectrometry, and the microbial composition was detected by using 16S rRNA gene sequencing.

View Article and Find Full Text PDF

This study employed in-situ online monitoring to assess the impact of Spartina alterniflora harvesting on greenhouse gas emissions. Their fluxes and δC values were measured in unvegetated tidal flat, low and medium vegetation coverage areas of the salt marsh wetlands along the south shore of Hangzhou Bay about a month after harvest. The objective was to clarify fluxes changes and interactions with environmental factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!