In this paper we evaluate a modified approach to the traditional single-pass intestinal perfusion (SPIP) rat model in investigating segmental-dependent permeability along the intestine following oral drug administration. Whereas in the traditional model one single segment of the intestine is perfused, we have simultaneously perfused three individual segments of each rat intestine: proximal jejunum, mid-small intestine and distal ileum, enabling to obtain tripled data from each rat compared to the traditional model. Three drugs, with different permeabilities, were utilized to evaluate the model: metoprolol, propranolol and cimetidine. Data was evaluated in comparison to the traditional method. Metoprolol and propranolol showed similar P(eff) values in the modified model in all segments. Segmental-dependent permeability was obtained for cimetidine, with lower P(eff) in the distal parts. Similar P(eff) values for all drugs were obtained in the traditional method, illustrating that the modified model is as accurate as the traditional, throughout a wide range of permeability characteristics, whether the permeability is constant or segment-dependent along the intestine. Three-fold higher statistical power to detect segmental-dependency was obtained in the modified approach, as each subject serves as his own control. In conclusion, the Triple SPIP model can reduce the number of animals utilized in segmental-dependent permeability research without compromising the quality of the data obtained.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejps.2008.10.013DOI Listing

Publication Analysis

Top Keywords

segmental-dependent permeability
12
permeability intestine
8
intestine oral
8
oral drug
8
drug administration
8
single-pass intestinal
8
intestinal perfusion
8
modified approach
8
traditional model
8
metoprolol propranolol
8

Similar Publications

The Role of Paracellular Transport in the Intestinal Absorption and Biopharmaceutical Characterization of Minoxidil.

Pharmaceutics

June 2022

Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.

The purpose of this study was to evaluate mechanisms behind the intestinal permeability of minoxidil, with special emphasis on paracellular transport, and elucidate the suitability of minoxidil to be a reference drug for Biopharmaceutics Classification System (BCS). The permeability of minoxidil (vs. metoprolol) was evaluated in-silico, in-vitro using both the PAMPA assay and across Caco-2 cell monolayers, as well as in-vivo in rats throughout the entire intestine.

View Article and Find Full Text PDF

Bariatric surgery is an effective treatment for severe obesity and related comorbidities, such as type II diabetes. Gastric bypass surgery shortens the length of the intestine, possibly leading to altered drug absorption. Metformin, a first-line treatment for type II diabetes, has permeability-dependent drug absorption, which may be sensitive to intestinal anatomic changes during bypass surgery, including Roux-en-Y gastric bypass (RYGB).

View Article and Find Full Text PDF

Regional Intestinal Drug Absorption: Biopharmaceutics and Drug Formulation.

Pharmaceutics

February 2021

Engineering, Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, 03550 Juan de Alicante, Spain.

The gastrointestinal tract (GIT) can be broadly divided into several regions: the stomach, the small intestine (which is subdivided to duodenum, jejunum, and ileum), and the colon. The conditions and environment in each of these segments, and even within the segment, are dependent on many factors, e.g.

View Article and Find Full Text PDF

BCS Class IV Oral Drugs and Absorption Windows: Regional-Dependent Intestinal Permeability of Furosemide.

Pharmaceutics

December 2020

Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.

Biopharmaceutical classification system (BCS) class IV drugs (low-solubility low-permeability) are generally poor drug candidates, yet, ~5% of oral drugs on the market belong to this class. While solubility is often predictable, intestinal permeability is rather complicated and highly dependent on many biochemical/physiological parameters. In this work, we investigated the solubility/permeability of BCS class IV drug, furosemide, considering the complexity of the entire small intestine (SI).

View Article and Find Full Text PDF

In this study, we aimed to elucidate biopharmaceutical characteristics of the anti-ulcer drug rebamipide, with special emphasis on the influence of gastrointestinal (GI) mucus on rebamipide segmental-dependent permeability and absorption. Experimental studies and physiologically-based pharmacokinetic (GastroPlus) simulations were used to elucidate segmental-dependent absorption and pharmacokinetic (PK) profile, accounting for various drug properties, including solubility/dissolution limitations, regional-dependent drug affinity to mucus and membrane permeability, as well as physiological factors such as regional-pH differences along the intestine, thickness and types of mucus, transit time and surface areas. Low permeability and extensive binding to GI mucus were the key modeling features, and accounting for these resulted in good fitting between the predicted and in-vivo PK profiles, validating the ability of the model to pinpoint the underlying mechanisms of rebamipide limited oral bioavailability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!