Telbivudine, a nucleoside analog inhibitor of the viral polymerase of hepatitis B virus (HBV), has been approved for the treatment of chronic HBV infection, along with the nucleoside inhibitors lamivudine and entecavir, and the nucleotide inhibitors adefovir and tenofovir. The resistance profiles of these agents were investigated via drug treatment of HepG2 cells stably transfected with wild-type or mutant HBV genomes bearing known resistance mutations. Telbivudine was not active against HBV strains bearing lamivudine mutations L180M/M204V/I but remained active against the M204V single mutant in vitro, potentially explaining the difference in resistance profiles between telbivudine and lamivudine. Against HBV genomes with known telbivudine-resistance mutations, M204I and L80I/M204I, telbivudine, lamivudine and entecavir lost 353- to >1000-fold activity whereas adefovir and tenofovir exhibited no more than 3-5-fold change. Conversely, against HBV cell lines expressing adefovir resistance mutations N236T and A181V, or the A194T mutant associated with resistance to tenofovir, telbivudine remained active as shown by respective fold-changes of 0.5 (N236T) and 1.0 (A181V and A194T). These in vitro results indicate that nucleoside and nucleotide drugs have different cross-resistance profiles. The addition of telbivudine to ongoing adefovir therapy could provide effective antiviral therapy to patients who develop adefovir resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.antiviral.2008.10.008DOI Listing

Publication Analysis

Top Keywords

adefovir tenofovir
12
telbivudine nucleoside
8
nucleoside analog
8
analog inhibitor
8
inhibitors adefovir
8
tenofovir telbivudine
8
lamivudine entecavir
8
resistance profiles
8
hbv genomes
8
resistance mutations
8

Similar Publications

Glycoconjugates of adefovir and tenofovir as asialoglycoprotein-mediated Anti-HBV prodrugs with enhanced liver targeting.

Eur J Med Chem

December 2024

State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China. Electronic address:

Hepatitis B virus (HBV) infection remains a significant global health challenge, often leading to severe liver complications such as cirrhosis and cancer. Current treatments rely heavily on nucleos(t)ide analogues like adefovir and tenofovir due to their potent antiviral effects. However, their clinical utility is limited by insufficient liver targeting, leading to off-target side effects, particularly nephrotoxicity.

View Article and Find Full Text PDF
Article Synopsis
  • Hypophosphatemic osteomalacia is a rare condition marked by low phosphate levels, which can occur due to genetic or acquired factors, and a case study discusses its management and prognosis when caused by specific antiviral drugs.
  • A 55-year-old man with chronic hepatitis B experienced symptoms like chest pain and fatigue after switching from adefovir to tenofovir, leading to the diagnosis of drug-induced hypophosphatemic osteomalacia.
  • Treatment included stopping the problematic drugs, switching to entecavir, and recommending dietary changes and supplements, which resulted in improved phosphate levels and resolution of symptoms.
View Article and Find Full Text PDF

Background: Newer biomarkers of Hepatitis B virus (HBV) infection and treatment response have not been well-characterized in individuals with HBV/HIV coinfection.

Methods: Pre-genomic RNA (pgRNA) and quantitative HBsAg (qHBsAg) were used to evaluate the associations with baseline characteristics. Participants included two separate groups - 236 with HBV/HIV coinfection enrolled in a cross-sectional cohort in Ghana and 47 from an HBV nucleoside/nucleotide treatment trial comparing tenofovir to adefovir in the United States.

View Article and Find Full Text PDF

Regioselective Homolytic C-H Borylation of Unprotected Adenosine and Adenine Derivatives via Minisci Reaction.

J Am Chem Soc

August 2024

Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.

A Minisci-type borylation of unprotected adenosine, adenine nucleotide, and adenosine analogues was successfully achieved through photocatalysis or thermal activation. Despite the challenges posed by the presence of two potential reactive sites (C and C) in the purine motif, the unique nucleophilic amine-ligated boryl radicals effortlessly achieved excellent C site selectivity and simultaneously avoided the formation of multifunctionalized products. This protocol proved effective for the late-stage borylation of some important biomolecules as well as a few antiviral and antitumor drug molecules, such as AMP, cAMP, Vidarabine, Cordycepin, Tenofovir, Adefovir, GS-441524, etc.

View Article and Find Full Text PDF

Unachieved antiviral strategies with acyclic nucleoside phosphonates: Dedicated to the memory of dr. Salvatore "Sam" Joseph Enna.

Biochem Pharmacol

October 2024

Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Hunan Clinical Molecular Diagnosis Center, Molecular Diagnostic Technology Hunan Engineering Research Center, Clinical Medical Research Center for Molecular Diagnosis of Infectious Diseases in Hunan Province, Changsha 410011, China. Electronic address:

Many acyclic nucleoside phosphonates such as cidofovir, adefovir dipivoxil, tenofovir disoproxil fumarate, and tenofovir alafenamide have been marketed for the treatment or prophylaxis of infectious diseases. Here, this review highlights potent acyclic nucleoside phosphonates for their potential in the treatment of retrovirus (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!