A new series of nitrogen-containing heterocycles 4H-1,3,4-oxadiazin-5(6H)-ones derivatives with hydrophobic and long chains were designed and synthesized by direct cyclization reaction of N'-alkylation substituted aroylhydrazines with chloroacetyl chloride. The preliminary assays showed that some of the compounds displayed moderate to good inhibitory activities toward monoamine oxidase (MAO) at the concentration of 10(-5)-10(-3)M, and antitumor activities against human lung cancer A-549 and human prostate cancer PC-3 cell lines at muM level, which might provide new scaffold for anticancer agents. Furthermore, compounds 5i and 5m exhibited significant inhibitory activity on chitin biosynthesis, which might represent a novel class of highly potential inhibitors of chitin synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2008.10.015DOI Listing

Publication Analysis

Top Keywords

hydrophobic long
8
monoamine oxidase
8
chitin biosynthesis
8
novel 4h-134-oxadiazin-56h-ones
4
4h-134-oxadiazin-56h-ones hydrophobic
4
long alkyl
4
alkyl chains
4
chains design
4
design synthesis
4
synthesis bioactive
4

Similar Publications

Engineering Wettability Transitions on Laser-Textured Shark Skin-Inspired Surfaces via Chemical Post-Processing Techniques.

Micromachines (Basel)

November 2024

Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, 170 Kessels Road, Brisbane, QLD 4111, Australia.

Surface wettability, the interaction between a liquid droplet and the surface it contacts, plays a key role in influencing droplet behavior and flow dynamics. There is a growing interest in designing surfaces with tailored wetting properties across diverse applications. Advanced fabrication techniques that create surfaces with unique wettability offer significant innovation potential.

View Article and Find Full Text PDF

Multi-Objective Optimization Accelerates the De Novo Design of Antimicrobial Peptide for .

Int J Mol Sci

December 2024

Department of Chemical Engineering & Institute of Biotechnology Engineering and Chemical Engineering, I-Shou University, Kaohsiung 824005, Taiwan.

Humans have long used antibiotics to fight bacteria, but increasing drug resistance has reduced their effectiveness. Antimicrobial peptides (AMPs) are a promising alternative with natural broad-spectrum activity against bacteria and viruses. However, their instability and hemolysis limit their medical use, making the design and improvement of AMPs a key research focus.

View Article and Find Full Text PDF

Molecular Insights into Structural Dynamics and Binding Interactions of Selected Inhibitors Targeting SARS-CoV-2 Main Protease.

Int J Mol Sci

December 2024

Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou 215123, China.

The SARS-CoV-2 main protease (Mpro, also known as 3CLpro) is a key target for antiviral therapy due to its critical role in viral replication and maturation. This study investigated the inhibitory effects of Bofutrelvir, Nirmatrelvir, and Selinexor on 3CLpro through molecular docking, molecular dynamics (MD) simulations, and free energy calculations. Nirmatrelvir exhibited the strongest binding affinity across docking tools (AutoDock Vina: -8.

View Article and Find Full Text PDF

Mitochondria maintain a biochemical environment that cooperates with BH3-only proteins (e.g., BIM) to potentiate BAX activation, the key event to initiate physiological and pharmacological forms of apoptosis.

View Article and Find Full Text PDF

Green, efficient treatment of crude oil spills and oil pollutants is a global challenge, with adsorption technology favored for its efficiency and low environmental impact. The development of an environmentally friendly adsorbent with high hydrophobicity, excellent adsorption performance, and degradability is crucial to overcoming the limitations of petroleum-based adsorbents. Here, a lignin-based polyurethane foam (LPUF) with superhydrophobic and photothermal oil-absorbing properties was fabricated by incorporating octadecyltrimethoxysilane into the foam system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!