In response to a Hazard Notice by the Medical Devices Agency of the UK in 2000 regarding the Trilucent breast implant (TBI), an expert panel was convened to implement a research program to determine whether genotoxic compounds were formed in the soybean oil filler (SOF) of TBIs and whether these could be released to produce local or systemic genotoxicity. The panel established a research program involving six laboratories. The program recruited 47 patients who had received TBIs (9 patients had received silicone implants previously). A reference group (REBI) of 34 patients who had exchanged either silicone (17 patients) implants (REBI-E) or patients (17) who were to receive primary implantation augmentation with silicone (REBI-PIA), and who were included as needed to increase either the pre- or post-explantation sample number. Of the 17 REBI-E patients, 5 had silicone implants and 12 had saline implants previously (prior to the last exchange). Investigation was undertaken before and after replacement surgery in the TBI patients and before and after replacement or augmentation surgery in the REBI patients. The pre- to post-operative sample interval was 8-12 weeks. Pre-operative samples were collected within 7 days prior to the operation. Information on a variety of demographic and behavioral features was collected. Biochemical and biological endpoints relating to genotoxic lipid peroxidation (LPO) products potentially formed in the SOF, and released locally or distributed systemically, were measured. The SOF of explanted TBIs was found to have substantial levels of LPO products, particularly malondialdehyde (MDA), and low levels of trans-4-hydroxy-2-nonenal (HNE) not found in unused implants. Mutagenicity of the SOF was related to the levels of MDA. Capsules that formed around TBIs were microscopically similar to those of reference implants, but MDA-DNA adducts were observed in capsular macrophages and fibroblasts of only TBI capsules. These cell types are not progenitors of breast carcinoma (BCa) and the location of the implants precludes LPO products reaching the mammary epithelial cells which are progenitors of BCa. Blood levels of LPO products were not increased in TBI patients compared to REBI patients and did not change with explantation. In TBI patients, white blood cells did not show evidence of increased levels of LPO-related aldehyde DNA adducts. In conclusion, based on a number of measured parameters, there was no evident effect that would contribute to breast or systemic cancer risk in the TBI patients, and the recommended treatment of TBI patients involving explantation was judged appropriate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yrtph.2008.10.009DOI Listing

Publication Analysis

Top Keywords

tbi patients
20
lpo products
16
patients
13
rebi patients
12
lipid peroxidation
8
trilucent breast
8
implants
8
patients received
8
silicone implants
8
rebi-e patients
8

Similar Publications

Goal: Current methodologies for assessing cerebral compliance using pressure sensor technologies are prone to errors and issues with inter- and intra-observer consistency. RAP, a metric for measuring intracranial compensatory reserve (and therefore compliance), holds promise. It is derived using the moving correlation between intracranial pressure (ICP) and the pulse amplitude of ICP (AMP).

View Article and Find Full Text PDF

Early Autonomic Dysfunction in Traumatic Brain Injury: An Article Review on the Impact on Multiple Organ Dysfunction.

J Clin Med

January 2025

Critical Care and Perioperative Population Health Research (CAPER) Program, Department of Anesthesiology, Duke University, Durham, NC 27708, USA.

Traumatic brain injury (TBI) is a complex condition and a leading cause of injury-related disability and death, with significant impacts on patient outcomes. Extracranial organ involvement plays a critical role in the outcome of patients following TBI. This review aims to provide a comprehensive overview of the pathophysiology, clinical presentation, and challenges in diagnosing patients with autonomic dysfunction after TBI.

View Article and Find Full Text PDF

Objectives: Subway-related accidents have risen with advancements in the system. We aim to study the injury patterns from these incidents.

Methods: This is a retrospective study from a single center, covering patients from 1 January 2016 to 31 December 2023.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is one of the primary causes of mortality and disability, with arterial blood pressure being an important factor in the clinical management of TBI. Spontaneously hypertensive rats (SHRs), widely used as a model of essential hypertension and vascular dementia, demonstrate dysfunction of the hypothalamic-pituitary-adrenal axis, which may contribute to glucocorticoid-mediated hippocampal damage. The aim of this study was to assess acute post-TBI seizures, delayed mortality, and hippocampal pathology in SHRs and normotensive Sprague Dawley rats (SDRs).

View Article and Find Full Text PDF

Background: Previous studies have shown that allogeneic peripheral blood stem cell transplantation (PBSCT) from an HLA haploidentical (haplo) donor followed by graft-versus-host disease (GVHD) prophylaxis with post-transplant cyclophosphamide (PTCy) results in lower relapse rates and improved DFS when compared to haplo bone marrow transplant (BMT) with PTCy. However, PBSCT leads to higher rates of GVHD. It is unknown whether the benefits of haplo PBSCT may be nullified in older patients (>60 years) by a higher susceptibility to GVHD and transplant related toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!