Chilo iridescent virus (CIV) is a large (approximately 1850 A diameter) insect virus with an icosahedral, T=147 capsid, a double-stranded DNA (dsDNA) genome, and an internal lipid membrane. The structure of CIV was determined to 13 A resolution by means of cryoelectron microscopy (cryoEM) and three-dimensional image reconstruction. A homology model of P50, the CIV major capsid protein (MCP), was built based on its amino acid sequence and the structure of the homologous Paramecium bursaria chlorella virus 1 Vp54 MCP. This model was fitted into the cryoEM density for each of the 25 trimeric CIV capsomers per icosahedral asymmetric unit. A difference map, in which the fitted CIV MCP capsomers were subtracted from the CIV cryoEM reconstruction, showed that there are at least three different types of minor capsid proteins associated with the capsomers outside the lipid membrane. "Finger" proteins are situated at many, but not all, of the spaces between three adjacent capsomers within each trisymmetron, and "zip" proteins are situated between sets of three adjacent capsomers at the boundary between neighboring trisymmetrons and pentasymmetrons. Based on the results of segmentation and density correlations, there are at least eight finger proteins and three dimeric and two monomeric zip proteins in one asymmetric unit of the CIV capsid. These minor proteins appear to stabilize the virus by acting as intercapsomer cross-links. One transmembrane "anchor" protein per icosahedral asymmetric unit, which extends from beneath one of the capsomers in the pentasymmetron to the internal leaflet of the lipid membrane, may provide additional stabilization for the capsid. These results are consistent with the observations for other large, icosahedral dsDNA viruses that also utilize minor capsid proteins for stabilization and for determining their assembly.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2911444 | PMC |
http://dx.doi.org/10.1016/j.jmb.2008.11.002 | DOI Listing |
Viruses
January 2025
Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai 200433, China.
This study aimed to create a new recombinant virus by modifying the EV-A71 capsid protein, serving as a useful tool and model for studying human Enteroviruses. We developed a new screening method using EV-A71 pseudovirus particles to systematically identify suitable insertion sites and tag types in the VP1 capsid protein. The pseudovirus's infectivity and replication can be assessed by measuring postinfection luciferase signals.
View Article and Find Full Text PDFViruses
December 2024
Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.
Coliphage N4 is a representative species of the family of bacteriophages. Originally structurally studied in 2008, the capsid structure was solved to 14 Å to reveal an interesting arrangement of Ig-like decoration proteins across the surface of the capsid. Herein, we present a high-resolution N4 structure, reporting a 2.
View Article and Find Full Text PDFMolecular surveillance of FMD epidemiology is a fundamental tool for advancing our understanding of virus biology, monitoring virus evolution, and guiding vaccine design. The accessibility of genetic data will facilitate a more comprehensive delineation of FMDV phylogeny on a global scale. In this study, we investigated the FMDV strains circulating in Russia during the 2013-2014 period in geographically distant regions utilizing whole genome sequencing followed by maximum-likelihood phylogenetic reconstruction of whole genome and VP1 gene sequences.
View Article and Find Full Text PDFPathogens
January 2025
Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan.
Viruses in the family can infect mammals and birds. Porcine circovirus type 2 (PCV2) significantly affects the livestock industry by causing porcine circovirus-associated diseases, such as postweaning multisystem wasting syndrome, respiratory disease complex, and dermatitis nephropathy syndrome. Additionally, beak and feather disease virus in parrots, canine circovirus in dogs, and columbid circovirus (pigeon circovirus) in racing pigeons induce immunosuppression, followed by secondary infections in these hosts.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
MRL, Merck & Co., Inc., Rahway, NJ 07065, USA.
Despite the success of combination antiretroviral therapy (cART) to suppress HIV replication, HIV persists in a long-lived reservoir that can give rise to rebounding viremia upon cART cessation. The translationally active reservoir consists of HIV-infected cells that continue to produce viral proteins even in the presence of cART. These active reservoir cells are implicated in the resultant viremia upon cART cessation and likely contribute to chronic immune activation in people living with HIV (PLWH) on cART.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!