A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The iron regulatory hormone hepcidin reduces ferroportin 1 content and iron release in H9C2 cardiomyocytes. | LitMetric

The iron regulatory hormone hepcidin reduces ferroportin 1 content and iron release in H9C2 cardiomyocytes.

J Nutr Biochem

National Key Laboratory of Chinese Medicine and Molecular Pharmacology (Shenzhen) and Laboratory of Brain Iron Metabolism, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong.

Published: November 2009

Iron plays a key pathophysiological role in a number of cardiac diseases. Studies on the mechanisms of heart iron homeostasis are therefore crucial for understanding the causes of excessive heart iron. In addition to iron uptake, cellular iron balance in the heart also depends on iron export. We provided evidence for the existence of iron exporter ferroportin 1 (Fpn1) in the heart in a recent study. The presence of hepcidin, a recently discovered iron regulatory hormone, was also confirmed in the heart recently. Based on these findings and the inhibiting role of hepcidin on Fpn1 in other tissues, we speculated that hepcidin might be able to bind with, internalize and degrade Fpn1 and then decrease iron export in heart cells, leading to an abnormal increase in heart iron and iron mediated cell injury. We therefore investigated the effects of hepcidin on the contents of Fpn1 and iron release in H9C2 cardiomyocyte cell line. We demonstrated that hepcidin has the ability to reduce Fpn1 content as well as iron release in this cell. The similar regulation patterns of hepcidin on the Fpn1 and iron release suggested that the decreased iron release resulted from the decreased content of Fpn1 induced by hepcidin. We also found that hepcidin has no significant effects on ceruloplasmin (CP) and hephaestin (Heph)--two proteins required for iron release from mammalian cells. The data imply that Fpn1, rather than Heph and CP, is the limited factor in the regulation of iron release from heart cells under physiological conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jnutbio.2008.07.014DOI Listing

Publication Analysis

Top Keywords

iron release
28
iron
19
heart iron
12
hepcidin
9
iron regulatory
8
regulatory hormone
8
release h9c2
8
heart
8
iron export
8
fpn1
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!