Introduction: Upon stimulation, endothelial cells release von Willebrand factor (VWF) in the unusually large (UL) and hyperactive forms that are rapidly cleaved by ADAMTS-13. Mutations in the ADAMTS13 gene result in ULVWF-mediated thrombosis found in patients with familial thrombotic thrombocytopenia purpura (TTP). ADAMTS-13 fits in the consensus of the ADAMTS family metalloproteases, but also contains two unique C- terminal CUB domains. Studying mutations in CUB domains could provide insights into the functional role of these domains.

Methods: Three naturally occurring mutations (C1213Y, W1245del and K1256FS) in the CUB-1 domain found in patients with TTP were expressed in Hela cells. The secretion, stability and VWF-cleaving activity of the mutants under static and flow conditions were examined.

Results: The mutations impaired secretion of ADAMTS-13 to apical surface, but not to extracellular matrix of transfected Hela cells. C1213Y and K1256FS also accelerated, whereas W1245del delayed, extracellular degradation of the mutants. The mutations also resulted in a moderate decrease in cleaving plasma VWF under static conditions. However, the mutated ADAMTS-13 bound to VWF substrate similarly as the wild-type metalloprotease and remained active in cleaving (UL)VWF under flow conditions.

Conclusions: The CUB-1 domain is critical for ADAMTS-13 secretion and stability upon secretion. ADAMTS-13 deficiency found in TTP patients could be resulted from reduced ADAMTS-13 secretion and, in the case of C1213Y and K1256FS accelerated degradation. W1245del is highly resistant to degradation and active in cleaving VWF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5649364PMC
http://dx.doi.org/10.1016/j.thromres.2008.09.007DOI Listing

Publication Analysis

Top Keywords

cub-1 domain
12
naturally occurring
8
occurring mutations
8
adamts-13
8
cub domains
8
hela cells
8
secretion stability
8
secretion adamts-13
8
c1213y k1256fs
8
k1256fs accelerated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!