Cerium, manganese and cobalt oxides as catalysts for the ozonation of selected organic compounds.

Chemosphere

Laboratório de Catálise e Materiais (LCM), Laboratório Associado LSRE/LCM, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, 4200-465 Rua Dr. Roberto Frias, Porto, Portugal.

Published: February 2009

Several metal oxides, as well as metal oxides supported on activated carbon, were assessed as ozonation catalysts for the removal of selected organic compounds. Two transition metals (Mn, Co) and one rare earth element (Ce) were chosen for the preparation of the two series of catalysts. These materials were used in the ozonation of two aromatic compounds (aniline and sulfanilic acid) and one textile azo dye (CI Acid Blue 113). The results were compared with those obtained with non-catalytic ozonation. All the tested materials were found to be effective ozonation catalysts. Among the metal oxides, those containing mixtures of cerium and manganese or cerium and cobalt enabled the highest mineralisation degrees. After 120 min of reaction the TOC removal achieved with Ce-Mn-O was 63% for sulfanilic acid and 67% for aniline, while Ce-Co-O allowed TOC removals of 58 and 66%, respectively. With single ozonation, the mineralisation of sulfanilic acid and aniline solutions was 34% and 40% after identical reaction period. Regarding the metal oxides supported on activated carbon, cerium and manganese oxides were, in general, the most active for the degradation of the studied compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2008.10.016DOI Listing

Publication Analysis

Top Keywords

metal oxides
16
cerium manganese
12
sulfanilic acid
12
selected organic
8
organic compounds
8
oxides supported
8
supported activated
8
activated carbon
8
ozonation catalysts
8
oxides
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!