The nitric oxide synthase (NOS)/nitric oxide (NO) system integrates cellular biochemical machinery and energetics. In heart microenvironment, dynamic NO behaviour depends upon the presence of superoxide anions, haemoglobin (Hb), and myoglobin (Mb), being hemoproteins are major players disarming NO bioactivity. The Antarctic icefish, which lack Hb and, in some species, also cardiac Mb, represent a unique model for exploring Hb and Mb impact on NOS/NO function. We report in the (Hb(-)/Mb(-)) icefish Chaenocephalus aceratus the presence of cardiac NOSs activity (NADPH-diaphorase) and endothelial NOS (eNOS)/inducible NOS (iNOS) zonal immuno-localization in the myocardium. eNOS is localized on endocardium and, to a lesser extent, in myocardiocytes, while iNOS is localized exclusively in myocardiocytes. Confronting eNOS and iNOS expression in Trematomus bernacchii (Hb(+)/Mb(+)), C. hamatus (Hb(-)/Mb(+)) and C. aceratus (Hb(-)/Mb(-)) is evident a lower expression in the Mb-less icefish. NO signaling was analyzed using isolated working heart preparations. In T. bernacchii, L-arginine and exogenous (SIN-1) NO donor dose-dependently decreased stroke volume, indicating decreased inotropism. L-arginine-induced inotropism was NOSs-dependent, being abolished by NOSs-inhibitor NG-monomethyl-L-arginine (L-NMMA). A SIN-1-induced negative inotropism was found in presence of SOD. NOS inhibition by L-N5-N-iminoethyl-L-ornithine (L-NIO) and L-NMMA confirmed the NO-mediated negative inotropic influence on cardiac performance. In contrast, in C. aceratus, L-arginine elicited a positive inotropism. SIN-1 induced a negative inotropism, which disappeared in presence of SOD, indicating peroxynitrite involvement. Cardiac performance was unaffected by L-NIO and L-NIL. NO signaling acted via a cGMP-independent mechanism. This high conservation degree of NOS localization pattern and signaling highlights its importance for cardiac biology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.niox.2008.10.006 | DOI Listing |
Comp Biochem Physiol B Biochem Mol Biol
May 2021
Department of Biological Sciences, Ohio University, Athens, OH 45701, USA. Electronic address:
Antarctic notothenioids are noted for extreme stenothermy, yet underpinnings of their thermal limits are not fully understood. We hypothesized that properties of ventricular membranes could explain previously observed differences among notothenioids in temperature onset of cardiac arrhythmias and persistent asystole. Microsomes were prepared using ventricles from six species of notothenioids, including four species from the hemoglobin-less (Hb-) family Channichthyidae (icefishes), which also differentially express cardiac myoglobin (Mb), and two species from the (Hb+) Nototheniidae.
View Article and Find Full Text PDFConserv Physiol
October 2019
Department of Zoology, University of British Columbia, Vancouver, BC V6T 124, Canada.
Antarctic notothenioids, some of which lack myoglobin (Mb) and/or haemoglobin (Hb), are considered extremely stenothermal, which raises conservation concerns since Polar regions are warming at unprecedented rates. Without reliable estimates of maximum cardiac output ([Formula: see text]), it is impossible to assess their physiological scope in response to warming seas. Therefore, we compared cardiac performance of two icefish species, (HbMb) and (HbMb), with a related notothenioid, (HbMb) using an perfused heart preparation.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
September 2009
Ponte Pietro Bucci cubo 6c, Department of Cellular Biology, University of Calabria, 87030, Arcavacata di Rende, CS, Italy.
The teleostean Channichthyidae (icefish), endemic stenotherms of the Antarctic waters, perennially at or near freezing, represent a unique example of disaptation among adult vertebrates for their loss of functional traits, particularly hemoglobin (Hb) and, in some species, cardiac myoglobin (Mb), once considered to be essential-life oxygen-binding chromoproteins. Conceivably, this stably frigid, oxygen-rich habitat has permitted high tolerance of disaptation, followed by subsequent adaptive recovery based on gene expression reprogramming and compensatory responses, including an alternative cardio-circulatory design, Hb-free blood and Mb-free cardiac muscle. This review revisits the functional significance of the multilevel cardio-circulatory compensations (hypervolemia, near-zero hematocrit and low blood viscosity, large bore capillaries, increased vascularity with great capacitance, cardiomegaly with very large cardiac output, high blood flow with low systemic pressure and systemic resistance) that counteract the challenge of hypoxemic hypoxia by increasing peripheral oxygen transcellular movement for aerobic tissues, including the myocardium.
View Article and Find Full Text PDFNitric Oxide
March 2009
Department of Cellular Biology, University of Calabria, 87030 Arcavacata di Rende, CS, Italy.
The nitric oxide synthase (NOS)/nitric oxide (NO) system integrates cellular biochemical machinery and energetics. In heart microenvironment, dynamic NO behaviour depends upon the presence of superoxide anions, haemoglobin (Hb), and myoglobin (Mb), being hemoproteins are major players disarming NO bioactivity. The Antarctic icefish, which lack Hb and, in some species, also cardiac Mb, represent a unique model for exploring Hb and Mb impact on NOS/NO function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!