Bioluminescence resonance energy transfer (BRET) is a powerful tool for the study of protein-protein interactions and conformational changes within proteins. Two common implementations of BRET are BRET(1) with Renilla luciferase (RLuc) and coelenterazine h (CLZ, lambda(em) approximately 475 nm) and BRET(2) with the substrate coelenterazine 400a (CLZ400A substrate, lambda(em)=395 nm) as the respective donors. For BRET(1) the acceptor is yellow fluorescent protein (YFP) (lambda(em) approximately 535 nm), a mutant of green fluorescent protein (GFP), and for BRET(2) it is GFP(2) (lambda(em) approximately 515 nm). It is not clear from previous studies which of these systems has superior signal-to-background characteristics. Here we directly compared BRET(1) and BRET(2) by placing two different protease-specific cleavage sequences between the donor and acceptor domains. The intact proteins simulate protein-protein association. Proteolytic cleavage of the peptide linker simulates protein dissociation and can be detected as a change in the BRET ratios. Complete cleavage of its target sequence by thrombin changed the BRET(2) ratio by a factor of 28.9+/-0.2 (relative standard deviation [RSD], n=3) and changed the BRET(1) ratio by a factor of 3.05+/-0.07. Complete cleavage of a caspase-3 target sequence resulted in the BRET ratio changes by factors of 15.45+/-0.08 for BRET(2) and 2.00+/-0.04 for BRET(1). The BRET(2) assay for thrombin was 2.9 times more sensitive compared with the BRET(1) version. Calculated detection limits (blank signal+3sigma(b), where sigma(b)=standard deviation [SD] of blank signal) were 53 pM (0.002 U) thrombin with BRET(1) and 15 pM (0.0005 U) thrombin with BRET(2). The results presented here suggest that BRET(2) is a more suitable system than BRET(1) for studying protein-protein interactions and as a potential sensor for monitoring protease activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2008.10.040DOI Listing

Publication Analysis

Top Keywords

resonance energy
8
energy transfer
8
proteolytic cleavage
8
protein-protein interactions
8
bret1
8
bret2
8
fluorescent protein
8
compared bret1
8
bret1 bret2
8
complete cleavage
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!