Neural stem cells (NSCs) cultured on glass surfaces modified by different chemical groups, including hydroxyl (-OH), sulfonic (-SO3H), amino (-NH2), carboxyl (-COOH), mercapto (-SH) and methyl (-CH3) groups, are shown here to commit to phonotypes with extreme sensitivity to surface chemical groups. The adhering NSCs at the level of single cells exhibited morphological changes in response to different chemical groups. NSCs on -SO(3)H surfaces had the largest contact area and the most flattened morphology, while those on -CH(3) surfaces exhibited the smallest contact area and the most rounded morphology. After 5 days of culture, the migration of NSCs from their original aggregates onto these test surfaces followed the trend: -NH2>-COOH=-SH>>-SO3H>-CH3>-OH. The expression of specific markers, including nestin, beta-Tubulin-III, glial fibrillary acidic protein and O4, were used to examine NSCs lineage specification. The -SO3H surfaces favored NSCs differentiation into oligodendrocytes, while NSCs in contact with -COOH, -NH2, -SH and -CH3 had the ability to differentiate into neurons, astrocytes and oligodendrocytes. Compared to -COOH surfaces, -NH2 seemed to promote neuronal differentiation. These chemically modified surfaces exhibited regulation of NSCs on adhesion, migration and differentiation potential, providing chemical means for the design of biomaterials to direct NSCs lineage specification for neural tissue engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2008.10.028 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!