After reports from Japan of neuropsychiatric adverse events (NPAEs) in children taking oseltamivir phosphate (hereafter referred to as oseltamivir [Tamiflu; F. Hoffmann-La Roche Ltd, Basel, Switzerland]) during and after the 2004--5 influenza season, Roche explored possible reasons for the increase in reporting rate and presented regular updates to the US FDA and other regulatory authorities. This review summarizes the results of a comprehensive assessment of the company's own preclinical and clinical studies, post-marketing spontaneous adverse event reporting, epidemiological investigations utilizing health claims and medical records databases and an extensive review of the literature, with the aim of answering the following questions: (i) what the types and rates of neuropsychiatric abnormalities reported in patients with influenza are, and whether these differ in patients who have received oseltamivir compared with those who have not; (ii) what levels of oseltamivir and its active metabolite, oseltamivir carboxylate are achieved in the CNS; (iii) whether oseltamivir and oseltamivir carboxylate have pharmacological activity in the CNS; and (iv) whether there are genetic differences between Japanese and Caucasian patients that result in different levels of oseltamivir and/or oseltamivir carboxylate in the CNS, differences in their metabolism or differences in their pharmacological activity in the CNS. In total, 3051 spontaneous reports of NPAEs were received by Roche, involving 2466 patients who received oseltamivir between 1999 and 15 September 2007; 2772 (90.9%) events originated from Japan, 190 (6.2%) from the US and 89 (2.9%) from other countries. During this period, oseltamivir was prescribed to around 48 million people worldwide. Crude NPAE reporting rates (per 1,000,000 prescriptions) in children (aged < or =16 years) and adults, respectively, were 99 and 28 events in Japan and 19 and 8 in the US. NPAEs were more commonly reported in children (2218 events in 1808 children aged < or =16 years vs 833 in 658 adults) and generally occurred within 48 hours of the onset of influenza illness and initiation of treatment. After categorizing the reported events according to International Classification of Diseases (9th edition) codes, abnormal behaviour (1160 events, 38.0%) and delusions/perceptual disturbances (661 events, 21.7%) were the largest categories of events, and delirium or delirium-like events (as defined by the American Psychiatric Association) were very common in most categories. No difference in NPAE reporting rates between oseltamivir and placebo was found in phase III treatment studies (0.5% vs 0.6%). Analyses of US healthcare claims databases showed the risk of NPAEs in oseltamivir-treated patients (n = 159,386) was no higher than those not receiving antivirals (n = 159,386). Analysis of medical records in the UK General Practice Research Database showed that the adjusted relative risk of NPAEs in influenza patients was significantly higher (1.75-fold) than in the general population. Based on literature reports, NPAEs in Japanese and Taiwanese children with influenza have occurred before the initiation of oseltamivir treatment; events were also similar to those occurring after the initiation of oseltamivir therapy. No clinically relevant differences in plasma pharmacokinetics of oseltamivir and its active metabolite oseltamivir carboxylate were noted between Japanese and Caucasian adults or children. Penetration into the CNS of both oseltamivir and oseltamivir carboxylate was low in Japanese and Caucasian adults (cerebrospinal fluid/plasma maximum concentration and area under the plasma concentration-time curve ratios of approximately 0.03), and the capacity for converting oseltamivir to oseltamivir carboxylate in rat and human brains was low. In animal autoradiography and pharmacokinetic studies, brain : plasma radioactivity ratios were generally 20% or lower. Animal studies showed no specific CNS/behavioural effects after administration of doses corresponding to > or =100 times the clinical dose. Oseltamivir or oseltamivir carboxylate did not interact with human neuraminidases or with 155 known molecular targets in radioligand binding and functional assays. A review of the information published to date on functional variations of genes relevant to oseltamivir pharmacokinetics and pharmacodynamics and simulated gene knock-out scenarios did not identify any plausible genetic explanations for the observed NPAEs. The available data do not suggest that the incidence of NPAEs in influenza patients receiving oseltamivir is higher than in those who do not, and no mechanism by which oseltamivir or oseltamivir carboxylate could cause or worsen such events could be identified.

Download full-text PDF

Source
http://dx.doi.org/10.2165/0002018-200831120-00006DOI Listing

Publication Analysis

Top Keywords

oseltamivir carboxylate
32
oseltamivir
27
oseltamivir oseltamivir
20
events
12
influenza patients
12
japanese caucasian
12
neuropsychiatric adverse
8
adverse events
8
patients
8
npaes
8

Similar Publications

Article Synopsis
  • * Edible bird's nest (EBN), which is swiftlet saliva consumed for health benefits, shows anti-avian viral properties, particularly by inhibiting the receptor-binding hemagglutinin (HA) activity after pancreatin treatment.
  • * EBN, rich in specific glycan structures, effectively enhances the action of antiviral drugs oseltamivir and zanamivir, suggesting its potential as a food-derived solution to combat avian viruses and reduce the risk of pandemics.
View Article and Find Full Text PDF
Article Synopsis
  • * The study evaluated the degradation behaviors of several anti-influenza drugs in urban rivers and a wastewater treatment plant, finding that newer drugs like BALM degrade quickly while older drugs persist in the environment.
  • * Ozonation after biological treatment was highly effective (over 90% removal) in eliminating anti-influenza drugs, highlighting its importance in managing pollution and reducing the risk of drug resistance in aquatic settings.
View Article and Find Full Text PDF

We present orally administrable prodrugs (s) of guanidino oseltamivir carboxylate () based on guanidine cyclic diimide (GCDI) to treat influenza viruses. By concealing the guanidine group, which significantly limits the intestinal absorption, its prodrugs s demonstrate dramatic improvement of oral bioavailability. The most promising antiviral substance readily forms covalent adducts with serum proteins via a degradable linker after the intestinal absorption.

View Article and Find Full Text PDF

Modulation of the transport-mediated active uptake by human serum albumin (HSA) for highly protein-bound substrates has been reported and improved the -to- extrapolation (IVIVE) of hepatic clearance. However, evidence for the relevance of such a phenomenon in the case of renal transporters is sparse. In this study, transport of renal organic anion transporter 1 or 3 (OAT1/3) substrates into conditionally immortalized proximal tubular epithelial cells transduced with OAT1/3 was measured in the presence and absence of 1 and 4% HSA while keeping the unbound substrate concentration constant (based on measured fraction unbound, ).

View Article and Find Full Text PDF

Citrus-derived flavanones as neuraminidase inhibitors: In vitro and in silico study.

Eur J Med Chem

November 2024

School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China. Electronic address:

Neuraminidase (NA) has been well-studied as a therapeutic target for Influenza. However, resistance to the influenza virus has been observed recently. Out of special interest in the utilization of dietary antivirals from citrus, in vitro inhibition activity against NA and in silico studies including molecular docking, molecular dynamic simulation, and a predictive ADMET study, were performed on five citrus-derived flavanones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!