Pacific herring Clupea pallasii and Japanese anchovy Engraulis japonicus, which belong to the same order Clupeiformes, spawn different types of eggs: demersal adherent eggs and pelagic eggs, respectively. We cloned three cDNAs for Pacific herring hatching enzyme and five for Japanese anchovy. Each of them was divided into two groups (group A and B) by phylogenetic analysis. They were expressed specifically in hatching gland cells (HGCs), which differentiated from the pillow and migrated to the edge of the head in both species. HGCs of Japanese anchovy stopped migration at that place, whereas those of Pacific herring continued to migrate dorsally and distributed widely all over the head region. During evolution, the program for the HGC migration would be varied to adapt to different hatching timing. Analysis of the gene expression revealed that Pacific herring embryos synthesized a large amount of hatching enzyme when compared with Japanese anchovy. Chorion of Pacific herring embryo was about 7.5 times thicker than that of Japanese anchovy embryo. Thus, the difference in their gene expression levels between two species is correlated with the difference in the thickness of chorion. These results suggest that the hatching system of each fish adapted to its respective hatching environment. Finally, hatching enzyme genes were cloned from each genomic DNA. The exon-intron structure of group B genes basically conserved that of the ancestral gene, whereas group A genes lost one intron. Several gene-specific changes of the exon-intron structure owing to nucleotide insertion and/or duplication were found in Japanese anchovy genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jez.b.21247 | DOI Listing |
Environ Manage
November 2024
Faculty of Applied Biological Science, Gifu University, Gifu, Japan.
Anchovy waste, a protein resource with high nutritional value and potential for recycling with a relatively high economic effect, is essential for the Sustainable Development Goals of the United Nations. Preventing microbial contamination during the recycling process, through enzymatic hydrolysis, ensures the safety of recycled products. High-pressure carbon dioxide is a novel non-thermal decontamination technology, which inactivates cells by breaking their membranes.
View Article and Find Full Text PDFMar Pollut Bull
November 2024
College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China.
Biol Lett
August 2024
Graduate School of Environmental Studies, Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan.
Marine predators often aggregate at the air-sea boundary layer to pursue shared prey. In such scenarios, seabirds are likely to benefit from underwater predators herding fish schools into tight clusters thereby enhancing seabirds' prey detectability and capture potential. However, this coexistence can lead to competition, affecting not only immediate foraging strategies but also their distribution and interspecies dynamics.
View Article and Find Full Text PDFMar Pollut Bull
September 2024
East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; Key Laboratory of East China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 200090, China. Electronic address:
This study thoroughly examines three cetacean monitoring methods and assessing their advantages and limitations, establishing a foundational basis for comprehensive information on composition, distribution, and behavior. While real-time and non-invasive, visual surveys favor surface-active cetaceans and are weather-dependent. Local ecological knowledge supplements insights into group behavior.
View Article and Find Full Text PDFGen Comp Endocrinol
May 2024
Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan; Aqua-Bioresource Innovation Center, Kyushu University, Saga 847-8511, Japan. Electronic address:
Primordial germ cells (PGCs) are pivotal for gonadal development and reproductive success. Though artificial induction of sterility by targeting PGCs are gaining popularity due to its advantages in fish surrogacy and biodiversity management, it is often skill and time intensive. In this study, we have focused on understanding the role of PGCs and the chemotactic SDF-1/CXCR4 signaling on gonad development of Japanese anchovy (JA, Engraulis japonicus), an upcoming marine model organism with eco-commercial values, with an aim to develop a novel, easy, and versatile gonad sterilization method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!