Dual labeled liposomes, carrying both paramagnetic and fluorescent lipids, were recently proposed as potent contrast agents for MR molecular imaging. These nanoparticles are coated with poly(ethylene glycol) (PEG) to increase their blood circulation half-life, which should allow extensive accumulation at the targeted site. To eliminate nonspecific blood pool signal from the MR images, the circulating liposomes should ideally be cleared from the circulation when sufficient target-specific contrast enhancement is obtained. To that aim, we designed an avidin chase that allowed controlled and rapid clearance of paramagnetic biotinylated liposomes from the blood circulation in C57BL/6 mice. Avidin-induced alterations in blood clearance kinetics and tissue distribution were studied quantitatively by determination of the Gd content in blood and tissue samples ex vivo. Intrinsic liposomal blood clearance showed bi-exponential behavior with half-lives t(1/2alpha) = 2.1 +/- 1.1 and t(1/2beta) = 15.1 +/- 5.4 hours, respectively. In contrast, the contrast agent was cleared from the blood by the avidin infusion to <1% of the initial dose within 4 hours. Avidin-induced liposomal blood clearance was also demonstrated in vivo by dynamic T(1)-weighted MRI. The ability to rapidly clear circulating contrast agents opens up exciting possibilities to study targeting kinetics, to increase the specificity of molecular MRI and to optimize nanoparticulate contrast agent formulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrm.21780 | DOI Listing |
AJR Am J Roentgenol
January 2025
Division of Nuclear Medicine and Molecular Imaging; The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD, USA.
Sci Adv
January 2025
Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
Intracranial optical imaging of glioblastoma (GBM) is challenging due to the scarcity of effective probes with blood-brain barrier (BBB) permeability and sufficient imaging depth. Herein, we describe a rational strategy for designing optical probes crossing the BBB based on an electron donor-π-acceptor system to adjust the lipid/water partition coefficient and molecular weight of probes. The amphiphilic hemicyanine dye (namely, IVTPO), which exhibits remarkable optical properties and effective BBB permeability, is chosen as an efficient fluorescence/photoacoustic probe for in vivo real-time imaging of orthotopic GBM with high resolution through the intact skull.
View Article and Find Full Text PDFSci Adv
January 2025
Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
Placebo analgesia is caused by inactive treatment, implicating endogenous brain function involvement. However, the neurobiological basis remains unclear. In this study, we found that μ-opioid signals in the medial prefrontal cortex (mPFC) activate the descending pain inhibitory system to initiate placebo analgesia in neuropathic pain rats.
View Article and Find Full Text PDFSci Transl Med
January 2025
Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91052 Erlangen, Germany.
Dysregulation at the intestinal epithelial barrier is a driver of inflammatory bowel disease (IBD). However, the molecular mechanisms of barrier failure are not well understood. Here, we demonstrate dysregulated mitochondrial fusion in intestinal epithelial cells (IECs) of patients with IBD and show that impaired fusion is sufficient to drive chronic intestinal inflammation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
Heterogeneous catalysts have emerged as a potential key for closing the carbon cycle by converting carbon dioxide (CO) into value-added chemicals. In this work, we report a highly active and stable ceria (CeO)-based electronically tuned trimetallic catalyst for CO to CO conversion. A unique distribution of electron density between the defective ceria support and the trimetallic nanoparticles (of Ni, Cu, Zn) was established by creating the strong metal support interaction (SMSI) between them.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!