Inhibitory effect of acetylcholine on monoamine oxidase A and B activity in different parts of rat brain.

Arzneimittelforschung

Biochemistry Department, Medical Research Institute, Alexandria University, Egypt.

Published: January 2009

Acetylcholine (CAS 60-31-1, ACh), which is similar in its chemical structure to the carbamate aldicarb, was found to inhibit brain monoamine oxidase isoenzymes, namely MAO-A and B. The effect of ACh on both isoenzymes extracted from the whole brain of male albino rats and its different parts (frontal cortex, basal ganglia, cerebellum, pons and medulla oblongata) was studied. The results indicated that ACh inhibited MAO-A from the cerebellum and MAO-B from the basal ganglia more than MAO iso-enzymes from other brain parts. The inhibition was of the competitive type. It was also found that the enzyme inhibitor dissociation constants (Ki) and the affinity constants (Ki/Km) of MAO-A were higher than those of MAO-B.

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-0031-1296546DOI Listing

Publication Analysis

Top Keywords

monoamine oxidase
8
basal ganglia
8
inhibitory acetylcholine
4
acetylcholine monoamine
4
oxidase activity
4
activity parts
4
parts rat
4
brain
4
rat brain
4
brain acetylcholine
4

Similar Publications

Backgrounds: Memory and emotion are especially vulnerable to psychiatric disorders such as post-traumatic stress disorder (PTSD), which is linked to disruptions in serotonin (5-HT) metabolism. Over 90% of the 5-HT precursor tryptophan (Trp) is metabolized via the Trp-kynurenine (KYN) metabolic pathway, which generates a variety of bioactive molecules. Dysregulation of KYN metabolism, particularly low levels of kynurenic acid (KYNA), appears to be linked to neuropsychiatric disorders.

View Article and Find Full Text PDF

[ ZMU-T06 produces 2-substituted quinolines by oxidative dehydroaromatization].

Sheng Wu Gong Cheng Xue Bao

January 2025

Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China.

2-substituted quinolines are the building blocks for the synthesis of natural products and pharmaceuticals. In comparison with classical methods, dehydroaromatization of 2-substituted-1,2,3,4-tetrahydroquinolines has emerged in recent years as an efficient and straightforward method to synthesize quinolines due to its high atom economy and sustainability. However, existing chemical methods need transition metal catalysts and harsh reaction conditions.

View Article and Find Full Text PDF

HYDROGEN SULFIDE AND CYSTATHIONINE γ-LYASE LEVELS FOR PATIENTS WITH PARKINSON'S DISEASE.

Georgian Med News

November 2024

2Department of Chemistry, College of Science, University of Mosul, Iraq.

Parkinson's disease (PD) is a complicated neurodegenerative disease that is the most prevalent severe movement disorder worldwide. The research includes studying the levels of hydrogen sulphide (H2S) and cystathionine γ-lyase (CSE) with some biochemical parameters in the serum of patients with PD in Mosul City (Iraq), which include Serotonin (SERT), dopamine (DA), sphingomyelin (SM), vitamin B12, Acetylcholine esterase (AChE), monoamine oxidase (MAO), creatine kinase (CK), aspartate aminotransferase (AST), alanine aminotransferase (ALT). Samples reached (100), which included: (40) for the Parkinson's patients group, and (60) for the control group.

View Article and Find Full Text PDF

Preparation of Ethosome Gel with Total Flavonoids from (L.) Willd. for the Treatment of Vitiligo.

Gels

January 2025

Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, China.

(L.) Willd. is a traditional medicinal herb in Chinese medicine, extensively used by various ethnic groups due to the numerous advantages derived from its total flavonoids.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is gradually increasing in prevalence and the complexity of its pathogenesis has led to a lengthy process of developing therapeutic drugs with limited success. Faced with this challenge, we proposed using a state-of-the-art drug screening algorithm to identify potential therapeutic compounds for AD from traditional Chinese medicine formulas with strong empirical support. We developed four deep neural network (DNN) models for AD drugs screening at the disease and target levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!