[Application of superparamagnetic iron oxide labeled antisense oligodeoxynucleotide probe in cellular magnetic resonance imaging].

Zhongguo Yi Xue Ke Xue Yuan Xue Bao

Department of Radiology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.

Published: October 2008

Objective: To prepare the superparamagnetic iron oxide (SPIO)-labeled antisense oligodeoxynucleotide (ASODN) probe and evaluate the application of this probe in cellular magnetic resonance imaging (MRI).

Methods: We prepared the SPIO-labeled ASODN probe using chemical cross linking method to conjugate SPIO to ASODN, detected its configuration by atomic force microscopy, determined the conjugating rate and biology activation by high performance liquid chromatography, and detected the stability by polyacrylamide gel electrophoresis. After that, we transfected the SK-Br3 oncocytes which had over-expression of the c-erbB2 oncogene by this probes, observed the intracellular iron distribution by optical microscope, measured iron content by atomic absorption spectroscopy, and observed the signal change by MRI.

Results: Atomic force microscope showed that the SPIO-labeled ASODN probe was mostly spherical and well-distributed, with a diameter of 25-40 nm and a conjugating rate of 100%. This probe had inhered biological activity and stability. In addition, light microscopy revealed an intracellular uptake of iron oxides in the transfected SK-Br3 oncocyte, and the iron content of the group of transfected SK-Br3 oncocytes was significantly higher than those of other contrast groups (all P < 0.01). MRI showed that transfected SK-Br3 oncocyte had the lowest signal among all other cells (all P < 0.05).

Conclusions: We prepared the SPIO-labeled ASODN probe successfully. It can effectively transfect SK-Br3 oncocyte and enter SK-Br3 oncocyte, and thus reduce the signal intension in MRI.

Download full-text PDF

Source

Publication Analysis

Top Keywords

asodn probe
16
transfected sk-br3
16
sk-br3 oncocyte
16
spio-labeled asodn
12
superparamagnetic iron
8
iron oxide
8
antisense oligodeoxynucleotide
8
probe cellular
8
cellular magnetic
8
magnetic resonance
8

Similar Publications

Connexin and gap junctions: perspectives from biology to nanotechnology based therapeutics.

Transl Res

September 2021

Nanobiotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India. Electronic address:

The concept of gap junctions and their role in intercellular communication has been known for around 50 years. Considerable progress has been made in understanding the fundamental biology of connexins in mediating gap junction intercellular communication (GJIC) and their role in various cellular processes including pathological conditions. However, this understanding has not led to development of advanced therapeutics utilizing GJIC.

View Article and Find Full Text PDF

RNase H is an endonuclease that catalyzes the cleavage of RNA. Because it only acts on RNA in RNA:DNA hybrids, RNase H can be used for targeted degradation of RNA when used in combination with antisense oligodeoxyribonucleotides (ASODNs) designed against a specific sequence of the target RNA. In this study, ASODN and RNase H were co-conjugated on magnetic nanoparticles.

View Article and Find Full Text PDF

Tracking the down-regulation of folate receptor-α in cancer cells through target specific delivery of quantum dots coupled with antisense oligonucleotide and targeted peptide.

Small

December 2013

Britton Chance Center for Biomedical Photonics at, Wuhan National Laboratory for Optoelectronics-Hubei, Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074, PR China.

Based on the multivalent binding capability of streptavidin (SA) to biotin, a multifunctional quantum dot probe (QD-(AS-ODN+p160)) coupled with antisense oligonucleotide (AS-ODN) and peptide p160 is designed for real-time tracking of targeted delivery of AS-ODN and regulation of folate receptor-α (hFR-α) in MCF-7 breast cancer cells. Fluorescence spectra, capillary electrophoresis (CE) and dynamic light scattering (DLS) are used to characterize the conjugation of AS-ODN and p160 with quantum dots (QDs), DLS results confirm the well stability of the probe in aqueous media. Confocal imaging and quantitative flow cytometry show that QD-(AS-ODN+p160) is able to specifically target human breast cancer MCF-7 cells.

View Article and Find Full Text PDF

The ability to image gene expression using 18F-labeled antisense oligonucleotides (asODNs) directed to specific mRNA transcripts during, or immediately following, radio- or chemotherapy would be a valuable clinical tool to monitor the early tumor response to treatment. Imaging of upregulated p21 mRNA postirradiation using 18F-labeled asODNs could offer insights into early tumor responses by detecting signs of accelerated cellular senescence. Thus, the aim of this work was to evaluate the uptake and distribution of a (radio)-fluorinated asODN in vitro in HCT116 p21(+/+) human colon carcinoma cells, asODN and a random sequence oligonucleotide (rsODN) were conjugated with a (radio)fluorine prosthetic group.

View Article and Find Full Text PDF

Molecular imaging of tumor antisense gene techniques have been applied to the study of magnetic resonance (MR) gene imaging associated with malignant tumors. In this study, we designed, synthesized, and tested a novel molecular probe, in which the antisense oligodeoxynucleotide (ASODN) was labeled with superparamagnetic iron oxide (SPIO), and its efficiency was examined by in vitro MR imaging after SK-Br-3 mammary carcinoma cell lines (oncocytes) transfection. The SPIO-labeled ASODN probe was prepared through SPIO conjugated to ASODN using a chemical cross linking method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!