The resolution of the natural racemic chromane 3,4-dihydro-5-hydroxy-2,7-dimethyl-8-(3''-methyl-2''-butenyl)-2-(4'-methyl-1',3'-pentadienyl)-2H-1-benzopyran-6-carboxylic acid (1) isolated from the leaves of Peperomia obtusifolia has been accomplished using stereoselective HPLC. The absolute configuration of the resolved enantiomers was determined by the analysis of optical rotations and CD spectra. The finding of a racemic mixture instead of an enantiomerically pure metabolite raises questions about the final steps in the biosynthesis of this class of natural products, suggesting that the intramolecular chromane ring formation step may not be enzymatically controlled at all in P. obtusifolia.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chir.20676DOI Listing

Publication Analysis

Top Keywords

absolute configuration
8
natural racemic
8
racemic chromane
8
peperomia obtusifolia
8
resolution absolute
4
configuration assignment
4
assignment natural
4
chromane peperomia
4
obtusifolia piperaceae
4
piperaceae resolution
4

Similar Publications

Saline-tolerant medicinal plants possess novel chemical constituents with high bioactivity because of their unique secondary metabolic pathways. an aquatic plant found in the coastal wetlands of the Yellow River Delta, was collected and studied in the present work. Ten drimane-type sesquiterpenoids and four triterpenoids, including six new ones (sinenseines A-F), were isolated from a whole plant of for the first time.

View Article and Find Full Text PDF

Phytochemical investigation of the leaf extract of Roxb. ex Hornem led to the isolation and identification of two new highly oxygenated cyclohexenes, uvariagrandols A () and B (), together with seven known compounds (-). Their structures were elucidated by spectroscopic methods as well as comparisons made from the literature.

View Article and Find Full Text PDF

Asymmetric Synthesis, Structure Determination, and Biologic Evaluation of Isomers of TLAM as PFK1 Inhibitors.

ACS Med Chem Lett

January 2025

Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.

Inhibiting phosphofructokinase-1 (PFK1) is a promising approach for treating lactic acidosis and mitochondrial dysfunction by activating oxidative phosphorylation. Tryptolinamide (TLAM) has been shown as a PFK1 inhibitor, but its complex stereochemistry, with 16 possible isomers complicates further development. We conducted an asymmetric synthesis, determined the absolute configurations, and evaluated the PFK1 inhibitory activity of the TLAM isomers.

View Article and Find Full Text PDF

Chiral discrimination is an indispensable tool that has pivotal importance in the assignment of absolute configuration and determination of enantiomeric excess in chiral compounds. A series of enantiomerically pure -1,2-diaminocyclohexane (-DACH)-derived benzamides were first synthesized by simple chemical steps, and 14 variated derivatives have been assessed as NMR chiral solvating agents (CSAs) for discrimination of the signals of mandelic acid (MA) in H NMR analysis. The highly efficient chiral recognition of CSA on different substrates, including MAs, carboxylic acids, amino acid derivatives, and phosphoric acids (32 examples), was expanded via H, F, and P NMR spectroscopy.

View Article and Find Full Text PDF

Two undescribed oxazole-containing diterpenoids (1-2) and a new diterpenoid (3) were isolated from the roots of Salvia miltiorrhiza. Their structures were elucidated by extensive HRESIMS and NMR spectroscopic analysis, and the absolute configurations of 1 and 3 were confirmed by comparison of the calculated and experimental electronic circular dichroism (ECD) spectra. Compound 1 represents the first example of an abietane diterpenoid with a benzo[d]oxazole unit fused in the ring B of the abietane skeleton.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!