Background: Oxidative stress and inflammation are two critical factors that drive the formation of plaques in atherosclerosis. Nrf2 is a redox-sensitive transcription factor that upregulates a battery of antioxidative genes and cytoprotective enzymes that constitute the cellular response to oxidative stress. Our previous studies have shown that disruption of Nrf2 in mice (Nrf2(-/-)) causes increased susceptibility to pulmonary emphysema, asthma and sepsis due to increased oxidative stress and inflammation. Here we have tested the hypothesis that disruption of Nrf2 in mice causes increased atherosclerosis.

Principal Findings: To investigate the role of Nrf2 in the development of atherosclerosis, we crossed Nrf2(-/-) mice with apoliporotein E-deficient (ApoE(-/-)) mice. ApoE(-/-) and ApoE(-/-)Nrf2(-/-) mice were fed an atherogenic diet for 20 weeks, and plaque area was assessed in the aortas. Surprisingly, ApoE(-/-)Nrf2(-/-) mice exhibited significantly smaller plaque area than ApoE(-/-) controls (11.5% vs 29.5%). This decrease in plaque area observed in ApoE(-/-)Nrf2(-/-) mice was associated with a significant decrease in uptake of modified low density lipoproteins (AcLDL) by isolated macrophages from ApoE(-/-)Nrf2(-/-) mice. Furthermore, atherosclerotic plaques and isolated macrophages from ApoE(-/-)Nrf2(-/-) mice exhibited decreased expression of the scavenger receptor CD36.

Conclusions: Nrf2 is pro-atherogenic in mice, despite its antioxidative function. The net pro-atherogenic effect of Nrf2 may be mediated via positive regulation of CD36. Our data demonstrates that the potential effects of Nrf2-targeted therapies on cardiovascular disease need to be investigated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2582492PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0003791PLOS

Publication Analysis

Top Keywords

apoe-/-nrf2-/- mice
20
disruption nrf2
12
oxidative stress
12
plaque area
12
mice
11
stress inflammation
8
nrf2 mice
8
mice exhibited
8
isolated macrophages
8
macrophages apoe-/-nrf2-/-
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!