A RAC/CDC-42-independent GIT/PIX/PAK signaling pathway mediates cell migration in C. elegans.

PLoS Genet

Center for Neuroscience, University of California Davis, Davis, California, United States of America.

Published: November 2008

P21 activated kinase (PAK), PAK interacting exchange factor (PIX), and G protein coupled receptor kinase interactor (GIT) compose a highly conserved signaling module controlling cell migrations, immune system signaling, and the formation of the mammalian nervous system. Traditionally, this signaling module is thought to facilitate the function of RAC and CDC-42 GTPases by allowing for the recruitment of a GTPase effector (PAK), a GTPase activator (PIX), and a scaffolding protein (GIT) as a regulated signaling unit to specific subcellular locations. Instead, we report here that this signaling module functions independently of RAC/CDC-42 GTPases in vivo to control the cell shape and migration of the distal tip cells (DTCs) during morphogenesis of the Caenorhabditis elegans gonad. In addition, this RAC/CDC-42-independent PAK pathway functions in parallel to a classical GTPase/PAK pathway to control the guidance aspect of DTC migration. Among the C. elegans PAKs, only PAK-1 functions in the GIT/PIX/PAK pathway independently of RAC/CDC42 GTPases, while both PAK-1 and MAX-2 are redundantly utilized in the GTPase/PAK pathway. Both RAC/CDC42-dependent and -independent PAK pathways function with the integrin receptors, suggesting that signaling through integrins can control the morphology, movement, and guidance of DTC through discrete pathways. Collectively, our results define a new signaling capacity for the GIT/PIX/PAK module that is likely to be conserved in vertebrates and demonstrate that PAK family members, which are redundantly utilized as GTPase effectors, can act non-redundantly in pathways independent of these GTPases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2581894PMC
http://dx.doi.org/10.1371/journal.pgen.1000269DOI Listing

Publication Analysis

Top Keywords

signaling module
12
signaling
8
migration elegans
8
gtpase/pak pathway
8
redundantly utilized
8
pak
6
pathway
5
rac/cdc-42-independent git/pix/pak
4
git/pix/pak signaling
4
signaling pathway
4

Similar Publications

A Modular Engineered DNA Nanodevice for Precise Profiling of Telomerase RNA Location and Activity.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.

Increased telomerase activity has been considered as a conspicuous sign of human cancers. The catalytic cores of telomerase involve a reverse transcriptase and the human telomerase RNA (hTR). However, current detection of telomerase is largely limited to its activity at the tissue and single-cell levels.

View Article and Find Full Text PDF

The OsMAPK6-OsWRKY72 module positively regulates rice leaf angle through brassinosteroid signals.

Plant Commun

December 2024

Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan' Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding/Fuzhou Branch, National Center of Rice Improvement of China/National Engineering Laboratory of Rice/South Base of National Key Laboratory of Hybrid Rice of China, Fuzhou 350003, China; College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:

Leaf angle is a major agronomic trait that determines plant architecture, which directly affects rice planting density, photosynthetic efficiency, and yield. The plant phytohormones brassinosteroids (BRs) and the MAPK signaling cascade are known to play crucial roles in regulating the leaf angle, but the underlying molecular mechanisms are not fully understood. Here, we report a rice WRKY family transcription factor gene, OsWRKY72, which positively regulates leaf angle by affecting lamina joint development and BR signaling.

View Article and Find Full Text PDF

A tripartite transcriptional module regulates protoderm specification during embryogenesis in Arabidopsis.

New Phytol

December 2024

State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Tai'an, 271018, China.

Protoderm formation is a crucial step in early embryo patterning in plants, separating the precursors of the epidermis and the inner tissues. Although key regulators such as ARABIDOPSIS THALIANA MERISTEM LAYER1 (ATML1) and PROTODERMAL FACTOR2 (PDF2) have been identified in the model plant Arabidopsis thaliana, the genetic pathways controlling protoderm specification remain largely unexplored. Here, we combined genetic, cytological, and molecular approaches to investigate the regulatory mechanisms of protoderm specification in Arabidopsis thaliana.

View Article and Find Full Text PDF

Fine-grained restoration of Mongolian patterns based on a multi-stage deep learning network.

Sci Rep

December 2024

College of Computer and Information Engineering, Inner Mongolia Agricultural University, Huhhot, 010000, Inner Mongolia, China.

Mongolian patterns are easily damaged by various factors in the process of inheritance and preservation, and the traditional manual restoration methods are time-consuming, laborious, and costly. With the development of deep learning technology and the rapid growth of the image restoration field, the existing image restoration methods are mostly aimed at natural scene images. They do not apply to Mongolian patterns with complex line texture structures and high saturation-rich colors.

View Article and Find Full Text PDF

Effective road terrain recognition is crucial for enhancing the driving safety, passability, and comfort of autonomous vehicles. This study addresses the challenges of accurately identifying diverse road surfaces using deep learning in complex environments. We introduce a novel end-to-end Tire Noise Recognition Residual Network (TNResNet) integrated with a time-frequency attention module, designed to capture and leverage time-frequency information from tire noise signals for road terrain classification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!