This study reports the synthesis of a number of 1- and 2-phenyl derivatives of the 1,4-dihydrobenzothiopyrano[4,3-c]pyrazole nucleus, which were obtained by the reaction of the versatile 7-substituted 2,3-dihydro-3-hydroxymethylene-4H-1-benzothiopyran-4-ones with hydrazine and substituted phenylhydrazines. The antiproliferative activity of the synthesized compounds was evaluated by an in vitro assay on human tumor cell lines (HL-60 and HeLa) and showed a significant capacity of the 7-methoxy-substituted benzothiopyrano[4,3-c]pyrazoles 3b-d, carrying the pendant phenyl group in the 1-position, to inhibit cell growth. Investigation of the mechanism of action indicated the induction of the mitochondrial permeability transition (MPT) as the molecular event responsible for the inhibition of cell growth. This phenomenon is related to the ability of the test compounds to cause a rapid Ca2+-dependent and cyclosporin A-sensitive collapse of the transmembrane potential (DeltaPsi) and matrix swelling. All this leads to the release of caspase activators, such as cytochrome c (cyt c) and apoptosis-inducing factor (AIF), which trigger the pro-apoptotic pathway leading to DNA fragmentation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2008.10.067DOI Listing

Publication Analysis

Top Keywords

cell growth
8
synthesis biological
4
biological activity
4
activity 14-dihydrobenzothiopyrano[43-c]pyrazole
4
14-dihydrobenzothiopyrano[43-c]pyrazole derivatives
4
derivatives novel
4
novel pro-apoptotic
4
pro-apoptotic mitochondrial
4
mitochondrial targeted
4
targeted agents
4

Similar Publications

Glioblastoma (GBM) is a malignant tumor with highly heterogeneous and invasive characteristics leading to a poor prognosis. The CD44 molecule, which is highly expressed in GBM, has emerged as a highly sought-after biological marker. Therapeutic strategies targeting the cell membrane protein CD44 have emerged, demonstrating novel therapeutic potential.

View Article and Find Full Text PDF

Purpose: Radiotherapy (RT)/cetuximab (C) demonstrated superiority over RT alone for locally advanced squamous head and neck cancer. We tested this in completely resected, intermediate-risk cancer.

Methods: Patients had squamous cell carcinoma of the head and neck (SCCHN) of the oral cavity, oropharynx, or larynx, with one or more risk factors warranting postoperative RT.

View Article and Find Full Text PDF

Pectins underpin the assembly, molecular architecture, and physical properties of plant cell walls and through their effects on cell growth and adhesion influence many aspects of plant development. They are some of the most dynamic components of plant cell walls, and pectin remodeling and degradation by pectin-modifying enzymes can drive developmental programming via physical effects on the cell wall and the generation of oligosaccharides that can act as signaling ligands. Here, we introduce pectin structure and synthesis and discuss pectin functions in plants.

View Article and Find Full Text PDF

ConspectusA key challenge in modern chemistry research is to mimic life-like functions using simple molecular networks and the integration of such networks into the first functional artificial cell. Central to this endeavor is the development of signaling elements that can regulate the cell function in time and space by producing entities of code with specific information to induce downstream activity. Such artificial signaling motifs can emerge in nonequilibrium systems, exhibiting complex dynamic behavior like bistability, multistability, oscillations, and chaos.

View Article and Find Full Text PDF

Significance of birth in the maintenance of quiescent neural stem cells.

Sci Adv

January 2025

Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.

Birth is one of the most important life events for animals. However, its significance in the developmental process is not fully understood. Here, we found that birth-induced alteration of glutamine metabolism in radial glia (RG), the embryonic neural stem cells (NSCs), is required for the acquisition of quiescence and long-term maintenance of postnatal NSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!