Background: The loss of a normal airway is devastating. Attempts to replace large airways have met with serious problems. Prerequisites for a tissue-engineered replacement are a suitable matrix, cells, ideal mechanical properties, and the absence of antigenicity. We aimed to bioengineer tubular tracheal matrices, using a tissue-engineering protocol, and to assess the application of this technology in a patient with end-stage airway disease.

Methods: We removed cells and MHC antigens from a human donor trachea, which was then readily colonised by epithelial cells and mesenchymal stem-cell-derived chondrocytes that had been cultured from cells taken from the recipient (a 30-year old woman with end-stage bronchomalacia). This graft was then used to replace the recipient's left main bronchus.

Findings: The graft immediately provided the recipient with a functional airway, improved her quality of life, and had a normal appearance and mechanical properties at 4 months. The patient had no anti-donor antibodies and was not on immunosuppressive drugs.

Interpretation: The results show that we can produce a cellular, tissue-engineered airway with mechanical properties that allow normal functioning, and which is free from the risks of rejection. The findings suggest that autologous cells combined with appropriate biomaterials might provide successful treatment for patients with serious clinical disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0140-6736(08)61598-6DOI Listing

Publication Analysis

Top Keywords

mechanical properties
12
tissue-engineered airway
8
airway
5
cells
5
clinical transplantation
4
transplantation tissue-engineered
4
airway background
4
background loss
4
loss normal
4
normal airway
4

Similar Publications

A highly effective method for creating a supramolecular metallogel of Ni(II) ions (NiA-TA) has been developed in our work. This approach uses benzene-1,3,5-tricarboxylic acid as a low molecular weight gelator (LMWG) in DMF solvent. Rheological studies assessed the mechanical properties of the Ni(II)-metallogel, revealing its angular frequency response and thixotropic behaviour.

View Article and Find Full Text PDF

Engineering plastics are finding widespread applications across a broad temperature spectrum, with additive manufacturing (AM) having now become commonplace for producing aerospace-grade components from polymers. However, there is limited data available on the behavior of plastic AM parts exposed to elevated temperatures. This study focuses on investigating the tensile strength, tensile modulus and Poisson's ratio of parts manufactured using fused filament fabrication (FFF) and polyetheretherketone (PEEK) plastics doped with two additives: short carbon fibers (SCFs) and multi-wall carbon nanotubes (MWCNTs).

View Article and Find Full Text PDF

Enhanced mechanical properties of alkali-activated dolomite dust emulsified asphalt composites.

Sci Rep

December 2024

School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, China.

The dolomite dust-emulsified asphalt composite (DAC) with excellent mechanical properties was successfully prepared using alkali activation. The effects of different alkali concentrations and emulsified asphalt contents on the mechanical properties of the materials were studied. And the micro-mechanisms of its mechanical performance changes were analyzed through SEM and XRD characterization.

View Article and Find Full Text PDF

Nonthermal plasma has been extensively utilized in various biomedical fields, including surface engineering of medical implants to enhance their biocompatibility and osseointegration. To ensure robustness and cost effectiveness for commercial viability, stable and effective plasma is required, which can be achieved by reducing gas pressure in a controlled volume. Here, we explored the impact of reduced gas pressure on plasma properties, surface characteristics of plasma-treated implants, and subsequent biological outcomes.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFASs) have recently garnered considerable concerns regarding their impacts on human and ecological health. Despite the important roles of polyamide membranes in remediating PFASs-contaminated water, the governing factors influencing PFAS transport across these membranes remain elusive. In this study, we investigate PFAS rejection by polyamide membranes using two machine learning (ML) models, namely XGBoost and multimodal transformer models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!