Interferon tau (IFNT), the maternal recognition of pregnancy signal in sheep and other ruminants, is secreted by the conceptus and regulates the expression of a number of genes in a cell-specific manner within the uterus. The response of different endometrial cell types to IFNT appears to be specified by IFN regulatory factors (IRFs). IRF2, a potent repressor of gene transcription, is expressed only by luminal (LE) and superficial glandular epithelia (sGE), whereas IRF1 and IRF9, activators of gene transcription, are expressed only in GE and stromal cells of the uterus during early pregnancy. In the present study, IRF6 was found to be expressed in LE/sGE and middle GE of the ovine uterine endometrium as well as conceptus trophectoderm. IRF family members can regulate transcription via IFN-stimulated response elements (ISREs). Transient transfection analyses found that IRF6 enhanced basal activity of ISRE-containing promoters, but did not enhance IFNT stimulation of ISRE-containing promoters in variety of different cell types. Further, IRF6 did not cooperate with IRF1 or reduce IRF2 repression of ISRE-containing promoter activity. These results establish that IRF6 is a transcriptional activator that is preferentially expressed in the endometrial epithelia and conceptus trophectoderm. IRF6 is hypothesized to play critical roles in endometrial gene expression as well as in conceptus trophectoderm growth and differentiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2655364 | PMC |
http://dx.doi.org/10.1016/j.mce.2008.10.025 | DOI Listing |
Adv Anat Embryol Cell Biol
January 2025
Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA.
Extracellular vesicles (EVs), including exosomes and microvesicles, have emerged as pivotal mediators of intercellular communication. Embryo implantation is a critical process in early pregnancy and requires communication between the embryo and maternal uterus. EVs are important in coordinating the communication between the embryo and maternal uterus.
View Article and Find Full Text PDFMol Reprod Dev
August 2024
Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan.
In many mammals, including ruminants, pregnancy requires pregnancy recognition signaling molecules secreted by the conceptus; however, the mechanism underlying pregnancy establishment in cattle remains unknown. Trophoblastic vesicles (TVs) are artificially produced from the extraembryonic tissues of the elongating conceptus and may be useful tools for understanding conception. This study investigated the morphological and functional properties of TVs in comparison to those of intact conceptuses.
View Article and Find Full Text PDFReprod Domest Anim
August 2024
Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia.
The reproductive efficiency of dromedary camels is hindered by challenges such as early embryonic mortality, which may be attributed to a lack of synchronization between conceptus signalling and uterine receptivity. Understanding the intricate biological processes involved in feto-maternal interactions during implantation is crucial to address these limitations. Osteopontin (OPN) is a protein involved in cell signalling and adhesion, playing a crucial role in embryonic implantation.
View Article and Find Full Text PDFReproduction
October 2024
Department of Animal Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA.
In Brief: The trophectoderm of the elongating conceptuses of cattle, sheep, and pigs secrete high amounts of interferons that increase or induce the expression of interferon-stimulated genes (ISGs) in the endometrium. Research concerning ISGs, performed from 1995 through 2023, is reviewed in this manuscript.
Abstract: Expression of the classical interferon (IFN) stimulated genes (ISGs) increases in the endometrial stroma and glandular epithelium (GE) through activation of signal transducer and activator of transcription (STAT) signaling in response to the secretion of IFN tau (IFNT) and IFN gamma (IFNG) by the conceptuses of ruminants, including cattle and sheep, and pigs, respectively.
Animals (Basel)
June 2024
Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-2471, USA.
The fertilization of oocytes ovulated by pigs, sheep, cows, and horses is not considered a limiting factor in successful establishment of pregnancy. Pig, sheep, and cow embryos undergo cleavage to the blastocyst stage, hatch from the zona pellucida, and undergo central-type implantation. Hatched blastocysts of pigs, sheep, and cows transition from tubular to long filamentous forms to establish surface area for exchange of nutrients and gases with the uterus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!