The hereditary dentine disorders, dentinogenesis imperfecta (DGI) and dentine dysplasia (DD), comprise a group of autosomal dominant genetic conditions characterised by abnormal dentine structure affecting either the primary or both the primary and secondary dentitions. DGI is reported to have an incidence of 1 in 6,000 to 1 in 8,000, whereas that of DD type 1 is 1 in 100,000. Clinically, the teeth are discoloured and show structural defects such as bulbous crowns and small pulp chambers radiographically. The underlying defect of mineralisation often results in shearing of the overlying enamel leaving exposed weakened dentine which is prone to wear. Currently, three sub-types of DGI and two sub-types of DD are recognised but this categorisation may change when other causative mutations are found. DGI type I is inherited with osteogenesis imperfecta and recent genetic studies have shown that mutations in the genes encoding collagen type 1, COL1A1 and COL1A2, underlie this condition. All other forms of DGI and DD, except DD-1, appear to result from mutations in the gene encoding dentine sialophosphoprotein (DSPP), suggesting that these conditions are allelic. Diagnosis is based on family history, pedigree construction and detailed clinical examination, while genetic diagnosis may become useful in the future once sufficient disease-causing mutations have been discovered. Differential diagnoses include hypocalcified forms of amelogenesis imperfecta, congenital erythropoietic porphyria, conditions leading to early tooth loss (Kostmann's disease, cyclic neutropenia, Chediak-Hegashi syndrome, histiocytosis X, Papillon-Lefevre syndrome), permanent teeth discolouration due to tetracyclines, Vitamin D-dependent and vitamin D-resistant rickets. Treatment involves removal of sources of infection or pain, improvement of aesthetics and protection of the posterior teeth from wear. Beginning in infancy, treatment usually continues into adulthood with a number of options including the use of crowns, over-dentures and dental implants depending on the age of the patient and the condition of the dentition. Where diagnosis occurs early in life and treatment follows the outlined recommendations, good aesthetics and function can be obtained.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2600777 | PMC |
http://dx.doi.org/10.1186/1750-1172-3-31 | DOI Listing |
Eur Arch Paediatr Dent
January 2025
Dental School, The University of Western Australia, 17 Monash Avenue, Nedlands, WA, 6009, Australia.
Purpose: This systematic review aims to consolidate existing genetic and clinical data on non-syndromic dentinogenesis imperfecta (DI) to enhance understanding of its etiology.
Methods: Electronic databases were searched for genetic familial linkage studies published in English without time restrictions. Genetic familial linkage studies that reported cases of Shield's classifications: DI-II, DI-III or DD-II were included.
Head Neck Pathol
January 2025
Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
Introduction: Segmental Odontomaxillary Dysplasia (SOD) is a non-hereditary, unilateral developmental anomaly recently included in the WHO's classification of head and neck tumors.
Case Presentation: Here, we report the case of an 8-year-old boy presenting with unilateral maxillary enlargement and pain without facial asymmetry. Computed tomography revealed a hypodense area in the maxillary bone with altered bone structure and osseous expansion.
Front Cell Dev Biol
December 2024
Hospital of Stomatology, Jilin University, Changchun, China.
Hereditary dentine disorders are autosomal dominant diseases that affect the development and structure of dentine, leading to various dental abnormalities and influencing the individual's oral health. It is generally classified as dentinogenesis imperfecta (DGI) and dentine dysplasia (DD). Specifically, DGI is characterized by the abnormal formation of dentine, resulting in teeth that are discolored, translucent, and prone to fracture or wear down easily.
View Article and Find Full Text PDFSci Rep
April 2024
Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China.
Hypomyelinating leukodystrophy (HLD) is a rare genetic heterogeneous disease that can affect myelin development in the central nervous system. This study aims to analyze the clinical phenotype and genetic function of a family with HLD-7 caused by POLR3A mutation. The proband (IV6) in this family mainly showed progressive cognitive decline, dentin dysplasia, and hypogonadotropic hypogonadism.
View Article and Find Full Text PDFThe dentine sialophosphoprotein (DSPP) gene is the only identified causative gene for dentinogenesis imperfecta type 2 (DGI-II), dentinogenesis imperfecta type 3 (DGI-III) and dentine dysplasia type 2 (DD-II). These three disorders may have similar molecular mechanisms involved in bridging the DSPP mutations and the resulting abnormal dentine mineralisation. The DSPP encoding proteins DSP (dentine sialoprotein) and DPP (dentine phosphoprotein) are positive regulators of dentine formation and perform a function during dentinogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!