A novel animal-analog of the human psychomotor vigilance task (PVT) was validated by subjecting rats to 24 h of sleep deprivation (SD) and examining the effect on performance in the rat-PVT (rPVT), and a rat multiple sleep latency test (rMSLT). During a three-phase (separate cohorts) crossover design, vigilance performance in the rPVT was compared with 24 h SD-induced changes in sleepiness assessed by polysomnographic evaluation and the rMSLT. Twenty-four hours of SD was produced by brief rotation of activity wheels at regular intervals in which the animals resided throughout the experiment. In the rPVT experiment, exercise controls (EC) experienced the same overall amount of locomotor activity as during SD, but allowed long periods of undisturbed sleep. After 24 h SD response latencies slowed, and lapses increased significantly during rPVT performance when compared with baseline and EC conditions. During the first 3 h of the recovery period following 24 h SD, polysomnographic measures indicated sleepiness. Latency to fall asleep after 24 h SD was assessed six times during the first 3 h after SD. Rats fell asleep significantly faster immediately after SD, than after non-SD baseline sessions. In conclusion, 24 h of SD in rats increased sleepiness, as indicated by polysomnography and the rMSLT, and impaired vigilance as measured by the rPVT. The rPVT closely resembles the human PVT test widely used in human sleep research and will assist investigation of the neurobiologic mechanisms that produce vigilance impairments after sleep disruption.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2605519PMC
http://dx.doi.org/10.1111/j.1365-2869.2008.00698.xDOI Listing

Publication Analysis

Top Keywords

sleep deprivation
8
vigilance task
8
vigilance
6
rpvt
6
sleep
5
hours sleep
4
deprivation rat
4
rat increases
4
sleepiness
4
increases sleepiness
4

Similar Publications

Sleepiness-related errors are a leading cause of driving accidents, requiring drivers to effectively monitor sleepiness levels. However, there are inter-individual differences in driving performance after sleep loss, with some showing poor driving performance while others show minimal impairment. This research explored if there are differences in self-reported sleepiness and driving performance in healthy drivers who exhibited vulnerability or resistance to objective driving impairment following extended wakefulness.

View Article and Find Full Text PDF

The relationship between fatigue, sleep quality, and sleep deprivation.

Sleep Breath

January 2025

Faculty of Medicine, Institute of Health Sciences, Department of Public Health, University of Hacettepe, Ankara, Türkiye.

Background: Fatigue, sleep disorders, and daytime sleepiness are interconnected, posing significant risks to occupational health and workplace safety. However, the literature on their relationships remains fragmented, with notable gaps, particularly concerning working populations. This descriptive cross-sectional study aimed to evaluate sleep quality (SQ), daily sleep time in hours (DST), daytime sleepiness, fatigue levels among employees in an automotive workplace, and their interrelationships.

View Article and Find Full Text PDF

Sensitivity of driving simulation to sleep deprivation: effect of task duration.

Sleep

January 2025

1Normandie Univ, UNICAEN, COMETE, GIP CYCERON, Caen, France.

Study Objectives: The Psychomotor Vigilance Task (PVT) is widely recognized as the gold standard for measuring vigilance, providing a rapid and objective measure of this state. While driving simulations are also used, they typically require longer administration times. This study examines the sensitivity of driving simulation variables to sleep deprivation throughout the task.

View Article and Find Full Text PDF

To examine whether the effects of low sleep quality, sleep deprivation, and chronotype on daytime cognitive function varied by age group. All data were collected online. We obtained the data from 366 employed people in their 20s, 40s, or 60s.

View Article and Find Full Text PDF

Structural and functional changes in the hippocampus induced by environmental exposures.

Neurosciences (Riyadh)

January 2025

From the Department of Basic Medical Sciences, College of Medicine, Taibah University, Madinah, Kingdom of Saudi Arabia.

The hippocampus, noted as (HC), plays a crucial role in the processes of learning, memory formation, and spatial navigation. Recent research reveals that this brain region can undergo structural and functional changes due to environmental exposures, including stress, noise pollution, sleep deprivation, and microgravity. This review synthesizes findings from animal and human studies, emphasizing the HC's plasticity in response to these factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!