miRNAs (microRNAs) are important regulatory molecules that control gene expression in all eukaryotes. miRNAs play an essential role in basic cellular activities such as proliferation, differentiation, morphogenesis and apoptosis. In haemopoiesis, several miRNA-based pathways have been identified. Importantly, miRNA mutations or mis-expression correlate with various human diseases. In cancer, deregulated miRNAs can function as tumour suppressors or oncogenes. The present review focuses on the recent literature concerning the role of miRNAs in three different research areas: haematology, cardiology and oncology, with particular focus on the results obtained by our group.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BST0361206 | DOI Listing |
Iran J Biotechnol
July 2024
Thoracic surgery Department, Tianjin Chest hospital, Tianjin City, 300222, PR. China.
Background: Long non-coding RNA (lncRNA) U731166 and microRNA (miR)-3607-3p are two ncRNAs with critical roles in cancer biology, while their involvement in esophageal squamous-cell carcinomas (ESCC) is unclear. We predicted that U731166 and miR-3607-3p might interact with each other. This study aimed to investigate their role and interaction in ESCC.
View Article and Find Full Text PDFNoncoding RNA Res
April 2025
Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia.
Cardiovascular diseases (CVD) are the foremost cause of mortality worldwide, with recent advances in immunology underscoring the critical roles of immune cells in their onset and progression. MicroRNAs (miRNAs), particularly those derived from the immune system, have emerged as vital regulators of cellular functions within the cardiovascular landscape. This review focuses on "immuno-miRs," a class of miRNAs that are highly expressed in immune cells, including T cells, B cells, NK cells, neutrophils, and monocytes/macrophages, and their significant role in controlling immune signaling pathways.
View Article and Find Full Text PDFNoncoding RNA Res
April 2025
Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA.
MicroRNAs (miRNAs) are classified as small, non-coding RNAs that play crucial roles in diverse biological processes, including cellular development, differentiation, growth, and metabolism. MiRNAs regulate gene expression by recognizing complementary sequences within messenger RNA (mRNA) molecules. Recent studies have revealed that miR-145-5p functions as a tumor suppressor in several cancers, including lung, liver, and breast cancers.
View Article and Find Full Text PDFJ Transl Med
December 2024
Department of General Surgery and Surgical-Medical Specialties, Unit of Periodontology, School of Dentistry, University of Catania, Via S. Sofia 78, Catania, Catania, 95123, Italy.
Background: Micro-RNAs (miRNAs) have been reported to play an important role during orthodontic tooth movement (OTM) through the regulation of periodontal soft and hard tissue homeostasis and functions. The aim of the present study was to assess the effects of miRNAs on OTM and to evaluate possible predictors that influenced the overall OTM amount at a 3-month follow-up.
Methods: Through a split-mouth design, 21 healthy patients (mean age 13.
ACS Chem Biol
December 2024
Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
MicroRNAs (miRNAs) play a significant role in tumor progression, and regulating miRNA expression with small molecules may offer a new approach to cancer therapy. Among them, miRNA-20b has been found to be dysregulated in several cancers, including nonsmall cell lung cancer (NSCLC). Herein, an in silico high-throughput computer screen was conducted to identify small molecules that downregulate miR-20b using the three-dimensional structure of the Dicer binding site on pre-miR-20b.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!