Mammalian NOSs (nitric oxide synthases) are haem-based monoxygenases that oxidize the amino acid arginine to the intracellular signal and protective cytotoxin nitric oxide (NO). Certain strains of mostly Gram-positive bacteria contain homologues of the mammalian NOS catalytic domain that can act as NOSs when suitable reductants are supplied. Crystallographic analyses of bacterial NOSs, with substrates and haem-ligands, have disclosed important features of assembly and active-centre chemistry, both general to the NOS family and specific to the bacterial proteins. The slow reaction profiles and especially stable haem-oxygen species of NOSs derived from bacterial thermophiles have facilitated the study of NOS reaction intermediates. Functionally, bacterial NOSs are distinct from their mammalian counterparts. In certain strains of Streptomyces, they participate in the biosynthetic nitration of plant toxins. In the radiation-resistant bacterium Deinococcus radiodurans, NOSs are also likely to be involved in biosynthetic nitration reactions, but, furthermore, appear to play an important role in the recovery from damage induced by UV radiation.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BST0361149DOI Listing

Publication Analysis

Top Keywords

nitric oxide
12
bacterial noss
8
biosynthetic nitration
8
noss
6
bacterial
5
enzymology nitric
4
oxide bacterial
4
bacterial pathogenesis
4
pathogenesis resistance
4
resistance mammalian
4

Similar Publications

Investigating the genetic factors influencing human birth weight may lead to biological insights into fetal growth and long-term health. We report analyses of rare variants that impact birth weight when carried by either fetus or mother, using whole exome sequencing data in up to 234,675 participants. Rare protein-truncating and deleterious missense variants are collapsed to perform gene burden tests.

View Article and Find Full Text PDF

Inhibition of Melanin Synthesis and Inflammation by Exosomes Derived from DB-14 Isolated from Flower.

J Microbiol Biotechnol

January 2025

Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University, Chungnam 31460, Republic of Korea.

is a lactic acid bacteria found in fermented products. In our previous study, was isolated from flowers, and its acid tolerance and antibacterial properties were thoroughly investigated. This study focuses on the inhibition of melanin synthesis and inflammation of exosomes derived from .

View Article and Find Full Text PDF

The vascular endothelium and its endothelial glycocalyx contribute to the protection of the endothelial cells from exposure to high levels of sodium and help these structures maintain normal function by regulating vascular permeability due to its buffering effect. The endothelial glycocalyx has negative surface charges that bind sodium and limit sodium entry into cells and the interstitial space. High sodium levels can disrupt this barrier and allow the movement of sodium into cells and extravascular fluid.

View Article and Find Full Text PDF

Background/aims: Hepatocellular carcinoma (HCC) is a malignant cancer with an increasing incidence worldwide. Although numerous efforts have been made to identify effective therapies for HCC, current strategies have limitations. We present a new approach for targeting L-arginine and argininosuccinate synthetase 1 (ASS1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!