An imaging multi-spectral retinal oximeter with intravitrial illumination is used to perform the first in vivo test of the blue-green minima shift oximetry method (BGO) in swine eyes [K. R. Dennighoff, R. A. Chipman, and L. W. Hillman, Opt. Lett. 31, 924-926 (2006); J. Biomed. Opt. 12, 034020 (2007).] A fiber optic intravitreal illuminator inserted through the pars plana was coupled to a monochromator and used to illuminate the retina from an angle. A camera viewing through the cornea recorded a series of images at each wavelength. This intravitreal light source moves the specular vessel glint away from the center of the vessel and directly illuminates the fundus behind most blood vessels. These two conditions combine to provide accurate measurements of vessel and perivascular reflectance. Equations describing these different light paths are solved, and BGO is used to evaluate large retinal vessels. In order to test BGO calibration in vivo, data were acquired from swine with varied retinal arterial oxyhemoglobin saturations (60-100% saturation.). The arterial saturations determined using BGO to analyze the multispectral image sets showed excellent correlation with co-oximeter data (r2=0.98, and residual error +/-3.4% saturation) and are similar to results when hemoglobin and blood were analyzed using this technique.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1117/1.3005390 | DOI Listing |
Anal Chim Acta
February 2025
Fundación IMDEA Nanociencia, Madrid, Spain; Division of Hematopoietic Innovative Therapies, Innovative Therapies Unit. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040, Madrid, Spain; Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040, Madrid, Spain. Electronic address:
Background: The detection of genetic sequences represents the gold standard procedure for species discrimination, genetic characterisation of tumours, and identification of pathogens. The development of new molecular detection methods, accessible and cost effective, is of great relevance. Biosensors based on plasmonic nanoparticles, such as gold nanoparticles (AuNPs), provide a powerful and versatile platform for highly sensitive, economic, user-friendly and label-free sensing.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, India.
Multi-organelle imaging allows the visualization of multiple organelles within a single cell, allowing monitoring of the cellular processes in real-time using various fluorescent probes that target specific organelles. However, the limited availability of fluorophores and potential spectral overlap present challenges, and many optimized designs are still in nascency. In this work, we synthesized various sulfonamide-based organic fluorophores that emit in the blue, green, and red regions to target different sub-cellular organelles.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
College of Engineering, Nanjing Agricultural University, Nanjing 210031, China.
Spectroscopic technology is an effective method for estimating rice chlorophyll content. However, redundant spectral information and the complex background of rice in situ challenge the accuracy and robustness of the estimation. To address this problem, this study proposed a band selection method combining spectral color characteristics and established a convolutional neural network (CNN) model based on this method to estimate chlorophyll content of rice for black (background-free), clear, muddy, and green algae-covered backgrounds.
View Article and Find Full Text PDFTalanta
April 2025
College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
Chem Sci
January 2025
Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry Lichtenbergstrasse 4 85748 Garching Germany
Chlorophylls are photoactive molecular building blocks essential to most photosynthetic systems. They have comparatively simple optical spectra defined by states with near-orthogonal transition dipole moments, referred to as B and B in the blue/green spectral region, and Q and Q in the red. Underlying these spectra is a surprisingly complex electronic structure, where strong electronic-vibrational interactions are crucial to the description of state characters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!