Excised bovine eyes are used as models for threshold determination of 532-nm laser-induced thermal damage of the retina in the pulse duration regime of 100 micros to 2 s for varying laser spot size diameters. The thresholds as determined by fluorescence viability staining compare well with the prediction of an extended Thompson-Gerstman computer model. Both models compare well with published Rhesus monkey threshold data. A previously unknown variation of the spot size dependence is seen for different pulse durations, which allows for a more complete understanding of the retinal thermal damage. Current International Commission on Nonionized Radiation Protection (ICNIRP), American National Standards Institute (ANS), and International Electromechanical Commission (IEC) laser and incoherent optical radiation exposure limits can be increased for extended sources for pulsed exposures. We conclude that the damage mechanism at threshold detected at 24 and 1 h for the nonhuman primate model is retinal pigment epithelium (RPE) cell damage and not thermal coagulation of the sensory retina. This work validates the bovine ex vivo and computer models for prediction of thresholds of thermally induced damage in the time domain of 10 micros to 2 s, which provides the basis for safety analysis of more complicated retinal exposure scenarios such as repetitive pulses, nonconstant retinal irradiance profiles, and scanned exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1117/1.2982526 | DOI Listing |
Asian Pac J Cancer Prev
January 2025
Parul Institute of Applied Sciences, Parul University, Vadodara, India.
Background: Breast cancer remains a significant global health challenge, requiring innovative therapeutic strategies. In silico methods, which leverage computational tools, offer a promising pathway for vaccine development. These methods facilitate antigen identification, epitope prediction, immune response modelling, and vaccine optimization, accelerating the design process.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
Splice-switching oligonucleotides (SSOs) can restore protein functionality in pathologies and are promising tools for manipulating the RNA-splicing machinery. Delivery vectors can considerably improve SSO functionality in vivo and allow dose reduction, thereby addressing the challenges of RNA-targeted therapeutics. Here, we report a biocompatible SSO nanocarrier, based on redox-responsive disulfide cross-linked low-molecular-weight linear polyethylenimine (cLPEI), for overcoming multiple biological barriers from subcellular compartments to en-route serum stability and finally in vivo delivery challenges.
View Article and Find Full Text PDFBrain
January 2025
Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.
Although the pathophysiology of migraine involves a complex ensemble of peripheral and central nervous system changes that remain incompletely understood, the activation and sensitization of the trigeminovascular system is believed to play a major role. However, non-invasive, in vivo neuroimaging studies investigating the underlying neural mechanisms of trigeminal system abnormalities in human migraine patients are limited. Here, we studied 60 patients with migraine (55 females, mean age ± SD: 36.
View Article and Find Full Text PDFJ Contemp Dent Pract
October 2024
Department of Prosthodontics, Dr. D.Y. Patil Dental College & Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India.
Aim: The current study aimed to assess the oropharyngeal space using cone-beam computed tomography (CBCT) and its effect on airway volume both before and after denture placement.
Materials And Methods: For this investigation, a total of 15 individuals with fully edentulous upper and lower ridges, ranging in age from 40 to 70, were taken into consideration. A recording of the pulmonary function test was made both prior to and following full denture recovery.
Bioact Mater
May 2025
State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China.
Implantable neural electrodes are key components of brain-computer interfaces (BCI), but the mismatch in mechanical and biological properties between electrode materials and brain tissue can lead to foreign body reactions and glial scarring, and subsequently compromise the long-term stability of electrical signal transmission. In this study, we proposed a new concept for the design and bioaugmentation of implantable electrodes (bio-array electrodes) featuring a heterogeneous gradient structure. Different composite polyaniline-gelatin-alginate based conductive hydrogel formulations were developed for electrode surface coating.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!