High-speed processing architecture for spectral-domain optical coherence microscopy.

J Biomed Opt

University of Illinois at Urbana-Champaign, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, Biophotonics Imaging Laboratory, Urbana, Illinois 61801, USA.

Published: January 2009

Optical coherence microscopy (OCM) is an interferometric technique that combines principles of confocal microscopy and optical coherence tomography (OCT) to obtain high-resolution en face images. Axial and lateral resolutions of several microns can be achieved using OCM depending on the numerical aperture (NA) of the objective and sample properties. We address the computational complexity that is inherent in spectral-domain OCM systems that limits its real-time capability as a microscope. An architecture that will improve the efficiency of the computation involved is presented. Currently, spectral-domain OCM images are obtained by individually taking the Fourier transform of each axial scan in cross-sectional frames and computationally slicing them to generate en face images. The real-time architecture presented here relies on the fact that only one Fourier domain point of a given axial scan needs to be computed rather than computing all the Fourier domain points, which can frequently require a significant amount of time to compute. This new realization has been shown to reduce the processing time to obtain the en face OCM images by a factor of 30.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2883333PMC
http://dx.doi.org/10.1117/1.2960018DOI Listing

Publication Analysis

Top Keywords

optical coherence
12
coherence microscopy
8
microscopy optical
8
face images
8
spectral-domain ocm
8
ocm images
8
axial scan
8
fourier domain
8
ocm
5
high-speed processing
4

Similar Publications

Purpose: To compare the amplitudes and implicit times of the oscillatory (OPs) of the full-field electroretinograms (ERGs) to those of the 30 Hz flicker ERGs in differentiating eyes with diabetic retinopathy (DR) from normal eyes.

Study Design: Single-center observational study.

Methods: Full-field ERGs were recorded in 55 patients with Type 2 diabetes mellitus (DM) and 20 normal control subjects.

View Article and Find Full Text PDF

Significance: Previous evidence showed that transient receptor potential vanilloid 4 (TRPV4) inhibition was protective of retinal ganglion cell (RGC) loss after chronic intraocular pressure (IOP) elevation in young animals. However, the role of TRPV4 in mechanosensing IOP changes in the aging eye is not well understood.

Purpose: This study compared the recovery of retinal function and structure after acute IOP elevation in 3- and 12-month-old mouse eyes with and without TRPV4 inhibition.

View Article and Find Full Text PDF

Characterization of LTBP2 mutation causing mitral valve prolapse.

Eur Heart J Open

January 2025

Department of Medicine, Cardiovascular Precision Medicine Center, Hadassah Hebrew University Medical Center, P.O. Box 12000, 9112001 Jerusalem, Israel.

Aims: Mitral valve prolapse (MVP) is a common valvular disorder associated with significant morbidity and mortality, with a strong genetic basis. This study aimed to identify a mutation in a family with MVP and to characterize the valve phenotype in LTBP2 knockout (KO) mice.

Methods And Results: Exome sequencing and segregation analysis were performed on a large family with MVP.

View Article and Find Full Text PDF

The interplay of electronic charge, spin, and orbital currents, coherently driven by picosecond long oscillations of light fields in spin-orbit coupled systems, is the foundation of emerging terahertz lightwave spintronics and orbitronics. The essential rules for how terahertz fields interact with these systems in a nonlinear way are still not understood. In this work, we demonstrate a universally applicable electronic nonlinearity originating from spin-orbit interactions in conducting materials, wherein the interplay of light-induced spin and orbital textures manifests.

View Article and Find Full Text PDF

A juxtapapillary retinal capillary hemangioma (JRCH) is a rare vascular hamartoma located on the optic nerve head or adjacent region. While often associated with von Hippel-Lindau (VHL) disease, JRCHs can also occur as an isolated condition, presenting unique therapeutic challenges and risks of visual impairment. We report a case of a 50-year-old Malay gentleman with diabetes mellitus who presented with a non-progressive superior visual field defect in his left eye for three months.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!