AI Article Synopsis

Article Abstract

A fluorescence diffuse tomography (FDT) setup for monitoring tumor growth in small animals has been created. In this setup an animal is scanned in the transilluminative configuration by a single source and detector pair. To remove stray light in the detection system, we used a combination of interferometric and absorption filters. To reduce the scanning time, an experimental animal was scanned using the following algorithm: (1) large-step scanning to obtain a general view of the animal (source and detector move synchronously); (2) selection of the fluorescing region; and (3) small-step scanning of the selected region and different relative shifts between the source and detector to obtain sufficient information for 3D reconstruction. We created a reconstruction algorithm based on the Holder norm to estimate the fluorophore distribution. This algorithm converges to the solution with a minimum number of fluorescing zones. The use of tumor cell lines transfected with fluorescent proteins allowed us to conduct intravital monitoring studies. Cell lines of human melanomas Mel-P, Mel-Ibr, Mel-Kor, and human embryonic kidney HEK293 Phoenix were transfected with DsRed-Express and Turbo-RFP genes. The emission of red fluorescent proteins (RFPs) in the long-wave optical range permits detection of deep-seated tumors. In vivo experiments were conducted immediately after subcutaneous injection of fluorescing cells into small animals.

Download full-text PDF

Source
http://dx.doi.org/10.1117/1.2953528DOI Listing

Publication Analysis

Top Keywords

small animals
12
source detector
12
fluorescence diffuse
8
diffuse tomography
8
red fluorescent
8
animal scanned
8
cell lines
8
fluorescent proteins
8
tomography detection
4
detection red
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!