Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The electronic interaction between confined pairs of He atoms in the C(20)H(20) dodecahedrane cage is analyzed. The He-He distance is only 1.265 A, a separation that is less than half the He-He distance in the free He dimer. The energy difference between the possible isomers is negligible (less than 0.15 kcal mol(-1)), illustrating that there is a nearly free precession movement of the He(2) fragment around its midpoint in the cage. We consider that a study of inclusion complexes, such as the case we have selected and other systems that involve artificially compressed molecular fragments, are useful reference points in testing and extending our understanding of the bonding capabilities of otherwise unreactive or unstable species. A key observation about bonding that emerges uniquely from endohedral (confinement) complexes is that a short internuclear separation does not necessarily imply the existence of a chemical bond.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.200801399 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!