In 1994, two independent groups extracted DNA from several Pleistocene epoch mammoths and noted differences among individual specimens. Subsequently, DNA sequences have been published for a number of extinct species. However, such ancient DNA is often fragmented and damaged, and studies to date have typically focused on short mitochondrial sequences, never yielding more than a fraction of a per cent of any nuclear genome. Here we describe 4.17 billion bases (Gb) of sequence from several mammoth specimens, 3.3 billion (80%) of which are from the woolly mammoth (Mammuthus primigenius) genome and thus comprise an extensive set of genome-wide sequence from an extinct species. Our data support earlier reports that elephantid genomes exceed 4 Gb. The estimated divergence rate between mammoth and African elephant is half of that between human and chimpanzee. The observed number of nucleotide differences between two particular mammoths was approximately one-eighth of that between one of them and the African elephant, corresponding to a separation between the mammoths of 1.5-2.0 Myr. The estimated probability that orthologous elephant and mammoth amino acids differ is 0.002, corresponding to about one residue per protein. Differences were discovered between mammoth and African elephant in amino-acid positions that are otherwise invariant over several billion years of combined mammalian evolution. This study shows that nuclear genome sequencing of extinct species can reveal population differences not evident from the fossil record, and perhaps even discover genetic factors that affect extinction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature07446 | DOI Listing |
Sci Rep
January 2025
Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, Kórnik, 62-035, Poland.
Genetic diversity is crucial to secure the survival and sustainability of ecosystems. Given anthropogenic pressure, as well as the projected alterations connected with the level and circulation of water, riparian forests are of particular concern. In this paper, we assessed the genetic variation of black poplar - one of the keystone tree species of riverine forests.
View Article and Find Full Text PDFLancet Psychiatry
February 2025
Section on Psychological Consequences of Torture and Persecution, World Psychiatric Association, Geneva, Switzerland. Electronic address:
Dev Comp Immunol
January 2025
Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju 63333, Republic of Korea. Electronic address:
Interferon regulatory factor 2 (IRF2) is a member of the IRF family that is specifically involved in diverse immune responses via interferon (IFN)/IRF-dependent signaling pathways. In this study, IRF2 of Epinephelus akaara (EAIRF2) was identified and characterized by evaluating its structural and functional properties. EAIRF2 showed the highest homology with IRF2 of Epinephelus coioides and clustered with teleosts in the phylogenetic tree.
View Article and Find Full Text PDFJ Vasc Interv Radiol
January 2025
Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104, United States.
Purpose: To evaluate the safety and efficacy of lymphatic embolization for primary genital lymphorrhea.
Materials And Methods: A retrospective analysis was conducted on patients who underwent lymphatic embolization for primary genital lymphorrhea and/or lower limb lymphedema between May 2016 and January 2022 at three specialized lymphatic centers. Following radiological evaluation of genital lymphorrhea, affected lymphatic vessels were selectively embolized to occlude abnormal lymphatic flow using a mixture of N-butyl cyanoacrylate glue and ethiodized oil.
DNA Repair (Amst)
January 2025
Departments of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia.
Mitochondrial DNA (mtDNA) is often more susceptible to damage compared to nuclear DNA. This is due to its localization in the mitochondrial matrix, where a large portion of reactive oxygen species are produced. Mitochondria do not have histones and mtDNA is only slightly protected by histone-like proteins and is believed to have less efficient repair mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!