A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Long-period earthquakes and co-eruptive dome inflation seen with particle image velocimetry. | LitMetric

Long-period earthquakes and co-eruptive dome inflation seen with particle image velocimetry.

Nature

Department of Earth and Environmental Science, New Mexico Tech, Socorro, New Mexico 87801, USA.

Published: November 2008

Dome growth and explosive degassing are fundamental processes in the cycle of continental arc volcanism. Because both processes generate seismic energy, geophysical field studies of volcanic processes are often grounded in the interpretation of volcanic earthquakes. Although previous seismic studies have provided important constraints on volcano dynamics, such inversion results do not uniquely constrain magma source dimension and material properties. Here we report combined optical geodetic and seismic observations that robustly constrain the sources of long-period volcanic earthquakes coincident with frequent explosive eruptions at the volcano Santiaguito, in Guatemala. The acceleration of dome deformation, extracted from high-resolution optical image processing, is shown to be associated with recorded long-period seismic sources and the frequency content of seismic signals measured across a broadband network. These earthquake sources are observed as abrupt subvertical surface displacements of the dome, in which 20-50-cm uplift originates at the central vent and propagates at approximately 50 m s(-1) towards the 200-m-diameter periphery. Episodic shifts of the 20-80-m thick dome induce peak forces greater than 10(9) N and reflect surface manifestations of the volcanic long-period earthquakes, a broad class of volcano seismic activity that is poorly understood and observed at many volcanic centres worldwide. On the basis of these observations, the abrupt mass shift of solidified domes, conduit magma or magma pads may play a part in generating long-period earthquakes at silicic volcanic systems.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature07429DOI Listing

Publication Analysis

Top Keywords

long-period earthquakes
12
volcanic earthquakes
8
seismic
6
volcanic
6
long-period
5
dome
5
earthquakes co-eruptive
4
co-eruptive dome
4
dome inflation
4
inflation particle
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!