The accuracy of ribosomal translation is achieved by an initial selection and a proofreading step, mediated by EF-Tu, which forms a ternary complex with aminoacyl(aa)-tRNA. To study the binding modes of different aa-tRNAs, we compared cryo-EM maps of the kirromycin-stalled ribosome bound with ternary complexes containing Phe-tRNA(Phe), Trp-tRNA(Trp), or Leu-tRNA(LeuI). The three maps suggest a common binding manner of cognate aa-tRNAs in their specific binding with both the ribosome and EF-Tu. All three aa-tRNAs have the same 'loaded spring' conformation with a kink and twist between the D-stem and anticodon stem. The three complexes are similarly integrated in an interaction network, extending from the anticodon loop through h44 and protein S12 to the EF-Tu-binding CCA end of aa-tRNA, proposed to signal cognate codon-anticodon interaction to the GTPase centre and tune the accuracy of aa-tRNA selection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586802PMC
http://dx.doi.org/10.1038/emboj.2008.243DOI Listing

Publication Analysis

Top Keywords

recognition aminoacyl-trna
4
aminoacyl-trna common
4
common molecular
4
molecular mechanism
4
mechanism revealed
4
revealed cryo-em
4
cryo-em accuracy
4
accuracy ribosomal
4
ribosomal translation
4
translation achieved
4

Similar Publications

The mechanism of discriminative aminoacylation by isoleucyl-tRNA synthetase based on wobble nucleotide recognition.

Nat Commun

December 2024

State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.

The faithful charging of amino acids to cognate tRNAs by aminoacyl-tRNA synthetases (AARSs) determines the fidelity of protein translation. Isoleucyl-tRNA synthetase (IleRS) distinguishes tRNA from tRNA solely based on the nucleotide at wobble position (N34), and a single substitution at N34 could exchange the aminoacylation specificity between two tRNAs. Here, we report the structural and biochemical mechanism of N34 recognition-based tRNA discrimination by Saccharomyces cerevisiae IleRS (ScIleRS).

View Article and Find Full Text PDF

This study showed that the predictor in logistic regression can be applied to estimating the Gibbs free energy of tRNAs' recognition of and binding to their aminoacyl-tRNA synthetases. Then, 24 linear logistic regression models predicting different classes of tRNAs loaded with a corresponding amino acid were trained in a machine learning classification method, reducing the misclassification error to zero. The models were based on minimal subsets of Boolean explanatory variables describing the favorite presence of nucleotides or nucleosides localized in the different parts of the tRNA.

View Article and Find Full Text PDF

Reprogramming the genetic code with flexizymes.

Nat Rev Chem

December 2024

Department of Chemistry, Graduate School of Science, University of Tokyo, Tokyo, Japan.

In the canonical genetic code, the 61 sense codons are assigned to the 20 proteinogenic amino acids. Advancements in genetic code manipulation techniques have enabled the ribosomal incorporation of nonproteinogenic amino acids (npAAs). The critical molecule for translating messenger RNA (mRNA) into peptide sequences is aminoacyl-transfer RNA (tRNA), which recognizes the mRNA codon through its anticodon.

View Article and Find Full Text PDF

Graphene quantum dots disrupt the mitochondrial potential of Trypanosoma brucei by interacting with the p18 subunit of ATP synthase F after endocytosis via the VSG recycling pathway.

J Colloid Interface Sci

February 2025

Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China. Electronic address:

Article Synopsis
  • Trypanosomiasis, caused by the parasite Trypanosoma brucei, poses significant health risks in Africa due to its ability to evade immunity through VSG changes, while its unique ATP synthase F subunit may be a potential drug target.
  • Researchers synthesized graphene quantum dots (GQDs) and studied their adhesion to T. brucei, revealing their ability to enter the parasite and affect its functions through various experimental techniques.
  • The study found that GQDs specifically bind to T. brucei's VSG, impair ATP synthase function, induce harmful reactive oxygen species (ROS), and disrupt essential biosynthetic pathways, presenting a promising strategy for developing new anti-trypanosome treatments.
View Article and Find Full Text PDF

The aim of the study was to purify and characterise recombinant proteins with the potential as an anti-parasite vaccine. Full-length cDNAs encoding seryl-tRNA synthetase (srs-2) were cloned from Haemonchus contortus (HcSRS-2) and Teladorsagia circumcincta (TcSRS-2). TcSRS-2 and HcSRS-2 cDNA (1458bp) encoded proteins of 486 amino acids, each of which was present as a single band of about 55 kDa on SDS-PAGE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!