Oxidation of oily sludge in supercritical water.

J Hazard Mater

School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin, PR China.

Published: June 2009

The oxidation of oily sludge in supercritical water is performed in a batch reactor at reaction temperatures between 663 and 723 K, the reaction times between 1 and 10 min and pressure between 23 and 27 MPa. Effect of reaction parameters such as reaction time, temperature, pressure, O(2) excess and initial COD on oxidation of oily sludge is investigated. The results indicate that chemical oxygen demand (COD) removal rate of 92% can be reached in 10 min. COD removal rate increases as the reaction time, temperature and initial COD increase. Pressure and O(2) excess have no remarkable affect on reaction. By taking into account the dependence of reaction rate on COD concentration, a global power-law rate expression was regressed from experimental data. The resulting pre-exponential factor was 8.99 x 10(14)(mol L(-1))(-0.405)s(-1); the activation energy was 213.13+/-1.33 kJ/mol; and the reaction order for oily sludge (based on COD) is 1.405. It was concluded that supercritical water oxidation (SCWO) is a rapidly emerging oily sludge processing technology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2008.10.008DOI Listing

Publication Analysis

Top Keywords

oily sludge
20
oxidation oily
12
supercritical water
12
sludge supercritical
8
water oxidation
8
reaction
8
reaction time
8
time temperature
8
pressure excess
8
initial cod
8

Similar Publications

The solid phase composition in oily sludge (OS) is a key factor affecting the oil-solid separation of OS. In this paper, the effects and mechanisms of solid-phase particle factors on the oil content of residue phase were investigated in order to improve the oil-solid separation efficiency. Flotation experiments were carried out on single-size sand and mixed-size sand OS consisting of three particle sizes at room temperature without adding flotation reagents.

View Article and Find Full Text PDF

In the waste oil recycling industry, large amounts of oil-containing sludge are still generated, thus posing a resource depletion issue when disposed of or incinerated without energy recovery or residual oil utilization. In this work, chemical activation experiments using phosphoric acid (HPO) were performed at a low temperature (600 °C) for 30 min to produce porous carbon products. From the results of the pore property analysis, an increasing trend with an increasing impregnation ratio from 0.

View Article and Find Full Text PDF

The improper disposal of olive mill wastewater (OMW) presents a significant environmental challenge for wastewater treatment plants (WWTPs) in the Gaza Strip. This study aims to evaluate the impact of OMW discharge on the operational efficiency of WWTPs, particularly during the olive harvesting season. To achieve this, samples were collected from both olive mills and WWTPs across the region and analyzed for key parameters such as chemical oxygen demand (COD), biological oxygen demand (BOD), phenols, oil and grease, and total suspended solids (TSS).

View Article and Find Full Text PDF

Insight into the Thermal Washing Mechanism of Sodium Lignosulfonate Alkyl/Sodium Persulfate Compound on Oily Sludge.

Int J Mol Sci

November 2024

Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China.

Article Synopsis
  • The study investigates the effectiveness of using sodium persulfate (SD) and sodium lignosulfonate surfactant in thermally washing oily sludge to improve remediation methods.
  • It evaluates the impact of various reaction conditions on the breakdown of different hydrocarbon types (saturated, aromatic, resins, and asphaltenes) in oily sludge.
  • Results showed that while SD effectively degrades these hydrocarbons, sodium hydroxide acts as a catalyst, and lignosulfonate aids in the removal process by lowering the solution's surface tension.
View Article and Find Full Text PDF

Enhancement of dewatering performance and effective degradation of petroleum hydrocarbons in biological oily sludge using atmospheric pressure plasma jet.

Bioresour Technol

December 2024

Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

The presence of petroleum hydrocarbon components (PHCs) in biological oily sludge increases the toxicity of the sludge and makes dewatering even more difficult. In this study, an atmospheric pressure plasma jet (APPJ) technology was used for treating biological oily sludge. The results showed that under specific conditions-a sludge/water ratio of 1:100, a discharge power of 440 W, and a 60-min treatment-the degradation rate of PHCs reached 36.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!