Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery.

Biomaterials

Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.

Published: February 2009

Targeted drug delivery using nanocarriers is achieved by functionalizing the carrier surface with a tissue-recognition ligand. Current surface modification methods require tedious and inefficient synthesis and purification steps, and are not easily amenable to incorporating multiple functionalities on a single surface. In this report, we describe a versatile, single-step surface functionalizing technique for polymeric nanoparticles. The technique utilizes the fact that when a diblock copolymer like polylactide-polyethylene glycol (PLA-PEG) is introduced in the oil/water emulsion used in polymeric nanoparticle formulation, the PLA block partitions into the polymer containing organic phase and PEG block partitions into the aqueous phase. Removal of the organic solvent results in the formation of nanoparticles with PEG on the surface. When a PLA-PEG-ligand conjugate is used instead of PLA-PEG copolymer, this technique permits a 'one-pot' fabrication of ligand-functionalized nanoparticles. In the current study, the IAASF approach facilitated the simultaneous incorporation of biotin and folic acid, known tumor-targeting ligands, on drug-loaded nanoparticles in a single step. Incorporation of the ligands on nanoparticles was confirmed by using NMR, surface plasmon resonance, transmission electron microscopy and tumor cell uptake studies. Simultaneous functionalization with both ligands significantly enhanced nanoparticle accumulation in tumors in vivo, and resulted in greatly improved efficacy of paclitaxel-loaded nanoparticles in a mouse xenograft tumor model. This new surface functionalization approach will enable the development of targeting strategies based on the use of multiple ligands on a single surface to target a tissue of interest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2637351PMC
http://dx.doi.org/10.1016/j.biomaterials.2008.09.056DOI Listing

Publication Analysis

Top Keywords

single-step surface
8
surface functionalization
8
polymeric nanoparticles
8
targeted drug
8
drug delivery
8
surface
8
single surface
8
block partitions
8
nanoparticles
7
functionalization polymeric
4

Similar Publications

Nanocrystalline TiO is a perspective semiconductor gas-sensing material due to its long-term stability of performance, but it is limited in application because of high electrical resistance. In this paper, a gas-sensing nanocomposite material with p-p heterojunction is introduced based on p-conducting Cr-doped TiO in combination with p-conducting CrO. Materials were synthesized via a single-step flame spray pyrolysis (FSP) technique and comprehensively studied by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) specific surface area analysis, transition electron microscopy (TEM), energy dispersive X-ray (EDX) spectroscopy, X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and Raman spectroscopy.

View Article and Find Full Text PDF

High-Performance TiCT-MXene/Mycelium Hybrid Membrane for Efficient Lead Remediation: Design and Mechanistic Insights.

ACS Appl Mater Interfaces

January 2025

Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260-1660, United States.

This study presents a hybrid microfiltration technology designed for high-performance lead (Pb(II)) remediation, especially from aqueous solutions with high Pb(II) concentrations, by utilizing two-dimensional (2D) TiCT-MXene layers deposited on dry mycelium membranes. The hybrid TiCT-MXene/mycelium (MyMX) membranes were fabricated via a single-step electrochemical deposition (ECD) technique, which enabled a uniform coating of 2D TiCT-MXene onto individual hyphal fibers of a prefabricated mycelium membrane. Optimized ECD parameters for high Pb(II) uptake were identified using scanning electron microscopy and energy-dispersive X-ray spectroscopy.

View Article and Find Full Text PDF

Isoelectric Point of Metal Oxide Films Formed by Anodization.

Langmuir

January 2025

Chemistry and Structure of novel Materials, University of Siegen, Paul-Bonatz Strasse 9-11, 57068 Siegen, Germany.

The surface charge of metal oxides is an important property that significantly contributes to a wide range of phenomena, including adsorption, catalysis, and material science. The surface charge can be predicted by determining the isoelectric point (IEP) of a material and the pH of a solution. Although there have been several studies of the IEP of metal oxide (nano)particles, only a few have reported the IEP of metal oxide films.

View Article and Find Full Text PDF

Omniphobic surfaces, which repel virtually any liquid regardless of its wettability, have been developed using doubly re-entrant microstructures. Although various microfabrication techniques have been explored, these often require multiple complex steps. In this study, reaction-diffusion photolithography (RDP) is used to fabricate micropost arrays with doubly re-entrant geometries through a single-step ultraviolet (UV) exposure process.

View Article and Find Full Text PDF

Absorbable Meek skin graft material transplantation: A preliminary experimental study.

Burns

January 2025

Jiangsu Tech-Bio-Med Medical Equipment Co.,Ltd., Changzhou, Jiangsu 213000, China.

Background: Wound closure is the core issue in treating patients with extensive burns. Allogeneic grafts can serve as a suitable temporary substitute in third-degree burns, and the Meek technique has provided encouraging outcomes in recent decades. However, whether allografts and the Meek technique could be used simultaneously so as to leverage the strengths of both has not been extensively examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!