Rotaviruses are the leading cause of diarrhoea in infants around the globe and, under certain conditions they can be present in drinking water sources and systems. Ingestion of 10-100 viral particles is enough to cause disease, emphasizing the need for sensitive diagnostic methods. In this study we have optimized the concentration of rotavirus particles using methacrylate monolithic chromatographic supports. Different surface chemistries and mobile phases were tested. A strong anion exchanger and phosphate buffer (pH 7) resulted in the highest recoveries after elution of the bound virus with 1M NaCl. Using this approach, rotavirus particles spiked in 1l volumes of tap or river water were efficiently concentrated. The developed concentration method in combination with a real time quantitative polymerase chain reaction assay detected rotavirus concentrations as low as 100 rotavirus particles/ml.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2008.10.106DOI Listing

Publication Analysis

Top Keywords

monolithic chromatographic
8
chromatographic supports
8
rotavirus particles
8
concentrating rotaviruses
4
rotaviruses water
4
water samples
4
samples monolithic
4
supports rotaviruses
4
rotaviruses leading
4
leading diarrhoea
4

Similar Publications

Preparation of halloysite nanotube-based monolithic column for small molecules and protein analysis.

J Chromatogr B Analyt Technol Biomed Life Sci

January 2025

College of Life Science, Hebei Agricultural University, Baoding, Hebei 071001, China; Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei 071001, China; Hebei Agriculture Waste Resource Utilization Engineering Research Center, Baoding, Hebei 071001, China. Electronic address:

s: This study aimed to prepare a new separation medium, silane coupling agent KH570- modified halloysite nanotube (MPS-HNT) monolithic column, with excellent separation performance for small molecular compounds and macromolecular proteins. This was prepared using the principle of redox polymerization with modified HNTs as monomers. The optimal monomer proportion was obtained by optimizing the ratio of monomer, cross-linker, and pore-forming agent, which was evaluated using scanning electron microscopy, nitrogen adsorption, and mercury intrusion.

View Article and Find Full Text PDF

Solid-phase microextraction (SPME) is a fast and simple sample preparation technique that enables the enrichment of analytes, and it is used in combination with other detection techniques to provide accurate and sensitive analytical methods. SPME is widely used in environmental monitoring, food safety, life analysis, biomedicine, and other applications. The extractive coating is the core of the SPME technique, and the properties of the extractive coating greatly influence extraction selectivity and efficiency, as well as the enrichment effect.

View Article and Find Full Text PDF

Strategy for the co-extraction and simultaneous quantification of organic pollutants and heavy metals by the on-line hyphenation of magnetic field-assisted in-tube solid phase microextraction and chromatographic technique.

J Hazard Mater

January 2025

Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China; College of the Environment and Ecology, Xiamen University, Xiamen 361005, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen 361005, China. Electronic address:

Due to the distinct difference in chemical properties, analysis of organic pollutants and heavy metals generally employs different sample preparation and measurement techniques, resulting in low analytical efficiency and high cost. To this end, a strategy for the co-extraction and then simultaneous quantification of organic pollutants and heavy metals was proposed by the on-line hyphenation of magnetic field-assisted in-tube solid phase microextraction (MA/IT-SPME) and HPLC technique. Simultaneous analysis of triazoles and chromium species were adopted as paradigm to demonstrate the feasibility of the proposed strategy.

View Article and Find Full Text PDF

Nano-LC with New Hydrophobic Monolith Based on 9-Antracenylmethyl Methacrylate for Biomolecule Separation.

Int J Mol Sci

December 2024

Department of Chemistry, College of Science, Taif University, Taif P.O. Box 11099, Saudi Arabia.

In this study, new monolithic poly(9-anthracenylmethyl methacrylate-co-trimethylolpropane trimethacrylate (TRIM) columns, referred as ANM monoliths were prepared, for the first time, and were used for the separation media for biomolecules and proteomics analysis by nano-liquid chromatography (nano-LC). Monolithic columns were prepared by in situ polymerization of 9-anthracenylmethyl methacrylate (ANM) and trimethylolpropane trimethacrylate (TRIM) in a fused silica capillary column of 100 µm ID. Polymerization solution was optimized in relation to monomer and porogenic solvent.

View Article and Find Full Text PDF

Precise Light-Driven Polarity of Stationary Phase for Regulating Gradient Separation of Liquid Chromatography.

Anal Chem

January 2025

Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji City 133002, Jilin Province, China.

Generally, the traditional stationary phase for liquid chromatography is the key part, but with an in situ immutable property, leading to many separation limitations. Based on the former exploration of photosensitive gas chromatography, we successfully prepared a photosensitive monolithic capillary silica column with high light transmission, taking advantage of the reversible cis-trans isomerism of azobenzene. And the cis-trans isomerism has launched an effective, reversible, and precise control on the liquid chromatographic retention behavior just by photoinduction according to the theoretical basis of a good correlation between photoinduction time, -azobenzene ratio, and chromatographic retention factor () ( > 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!