AI Article Synopsis

Article Abstract

Background: Genetic maps characterizing the inheritance patterns of traits and markers have been developed for a wide range of species and used to study questions in biomedicine, agriculture, ecology and evolutionary biology. The status of rainbow trout genetic maps has progressed significantly over the last decade due to interest in this species in aquaculture and sport fisheries, and as a model research organism for studies related to carcinogenesis, toxicology, comparative immunology, disease ecology, physiology and nutrition. We constructed a second generation genetic map for rainbow trout using microsatellite markers to facilitate the identification of quantitative trait loci for traits affecting aquaculture production efficiency and the extraction of comparative information from the genome sequences of model fish species.

Results: A genetic map ordering 1124 microsatellite loci spanning a sex-averaged distance of 2927.10 cM (Kosambi) and having 2.6 cM resolution was constructed by genotyping 10 parents and 150 offspring from the National Center for Cool and Cold Water Aquaculture (NCCCWA) reference family mapping panel. Microsatellite markers, representing pairs of loci resulting from an evolutionarily recent whole genome duplication event, identified 180 duplicated regions within the rainbow trout genome. Microsatellites associated with genes through expressed sequence tags or bacterial artificial chromosomes produced comparative assignments with tetraodon, zebrafish, fugu, and medaka resulting in assignments of homology for 199 loci.

Conclusion: The second generation NCCCWA genetic map provides an increased microsatellite marker density and quantifies differences in recombination rate between the sexes in outbred populations. It has the potential to integrate with cytogenetic and other physical maps, identifying paralogous regions of the rainbow trout genome arising from the evolutionarily recent genome duplication event, and anchoring a comparative map with the zebrafish, medaka, tetraodon, and fugu genomes. This resource will facilitate the identification of genes affecting traits of interest through fine mapping and positional cloning of candidate genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2605456PMC
http://dx.doi.org/10.1186/1471-2156-9-74DOI Listing

Publication Analysis

Top Keywords

rainbow trout
20
genetic map
16
second generation
12
generation genetic
8
map rainbow
8
genetic maps
8
microsatellite markers
8
facilitate identification
8
evolutionarily genome
8
genome duplication
8

Similar Publications

Transient cognitive impacts of oxygen deprivation caused by catch-and-release angling.

Biol Lett

January 2025

Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Faculty of Health and Life Sciences, Linnaeus University, Kalmar 39231, Sweden.

Vertebrate brain function is particularly sensitive to the effects of hypoxia, with even brief periods of oxygen deprivation causing significant brain damage and impaired cognitive abilities. This study is the first to investigate the cognitive consequences of hypoxia in fish, specifically induced by exhaustive exercise and air exposure, conditions commonly encountered during catch-and-release (C&R) practices in recreational fishing. Angling exerts substantial pressure on inland fish populations, underscoring the need for sustainable practices like C&R.

View Article and Find Full Text PDF

Widely used second-generation anticoagulant rodenticides like brodifacoum are classified as persistent, bioaccumulative, and toxic. Widespread exposure of terrestrial and avian non-target species is well-known and recently hepatic anticoagulant rodenticide residues have been detected in wild fish. However, no sufficient data exist to interpret the effects of these findings on fish health.

View Article and Find Full Text PDF

Effects of Feed Supplementation With Fulvic Acid on the Systemic and Mucosal Protective Mechanisms of Juvenile Rainbow Trout (Oncorhynchus mykiss).

J Anim Physiol Anim Nutr (Berl)

January 2025

Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia, České Budějovice, Czech Republic.

Rainbow trout (Oncorhynchus mykiss) is an important fish species raised in aquaculture, but it is susceptible to stress, infections diseases. The present study aimed to determine the effects of fulvic acid feed addition on the systemic and mucosal protective mechanisms of juvenile rainbow trout and to elucidate the underlying molecular mechanisms of changes in the gut. Rainbow trout (4.

View Article and Find Full Text PDF

Rainbow trout () is a freshwater fish susceptible to chemical and microbial spoilage, limiting its shelf life. This study aimed to enhance and extend the rainbow trout fillets' shelf life stored at 4°C ± 1°C through an immersion treatment using ultrasound-assisted, defatted pine nut ( Wallich) extracts at concentrations of 1% and 2% (w/v), compared to the control group (0% pine nut). Evaluations were conducted at storage intervals of 0, 4, 8, 12, 16, and 20 days.

View Article and Find Full Text PDF

N-methyladenosine RNA methylation regulates microplastics-induced cell senescence in the rainbow trout liver.

Sci Total Environ

January 2025

School of Bioengineering and Technology, Tianshui Normal University, Gansu Province, PR China. Electronic address:

Microplastics are prevalent in aquatic ecosystems, impacting various forms of aquatic life, including fish. In this study, Rainbow trout (Oncorhynchus mykiss) were exposed to two concentrations of microplastics (0 and 500 μg/L) over a 14-day period, during which a comprehensive analysis was conducted to assess the liver accumulation of microplastics and their effects on oxidative stress, the liver response, and transcriptomics. Our findings indicated that microplastics significantly accumulated in the liver and activated the antioxidant system in fish by enhancing the activity of antioxidant enzymes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!